Journal of Zhejiang Agricultural Sciences ›› 2021, Vol. 62 ›› Issue (2): 401-411.DOI: 10.16178/j.issn.0528-9017.20210251
Previous Articles Next Articles
Received:
2020-12-22
Online:
2021-02-11
Published:
2021-02-04
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20210251
[1] |
PERRY R P, KELLEY D E. Existence of methylated messenger RNA in mouse L cells[J]. Cell, 1974,1(1):37-42.
DOI URL |
[2] |
DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells[J]. PNAS, 1974,71(10):3971-3975.
DOI URL PMID |
[3] |
CLANCY M J, SHAMBAUGH M E, TIMPTE C S, et al. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene[J]. Nucleic Acids Research, 2002,30(20):4509-4518.
DOI URL PMID |
[4] |
ZHONG S L, LI H Y, BODI Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J]. The Plant Cell, 2008,20(5):1278-1288.
DOI URL PMID |
[5] |
GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation [J]. Science, 2015,347(6225):1002-1006.
DOI URL PMID |
[6] |
BATISTA P J, MOLINIE B, WANG J K, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells [J]. Cell Stem Cell, 2014,15(6):707-719.
DOI URL |
[7] |
WANG Y, LI Y, TOTH J I, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nature Cell Biology, 2014,16(2):191-198.
DOI URL |
[8] |
JAFFREY S R, KHARAS M G. Emerging links between m6A and misregulated mRNA methylation in cancer [J]. Genome Medicine, 2017,9:2.
DOI URL PMID |
[9] |
VU L P, PICKERING B F, CHENG Y M, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells [J]. Nature Medicine, 2017,23(11):1369-1376.
DOI URL PMID |
[10] |
LIU S P, LI G H, LI Q J, et al. The roles and mechanisms of YTH domain-containing proteins in cancer development and progression[J]. American Journal of Cancer Research, 2020,10(4):1068-1084.
URL PMID |
[11] |
SHENG H, LI Z, SU S X, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation[J]. Carcinogenesis, 2020,41(5):541-550.
DOI URL PMID |
[12] |
FUSTIN J M, DOI M, YAMAGUCHI Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock[J]. Cell, 2013,155(4):793-806.
DOI URL PMID |
[13] |
MERKURJEV D, HONG W T, IIDA K, et al. Synaptic N6-methyladenosine (m6A) epitranscriptome reveals functional partitioning of localized transcripts [J]. Nature Neuroscience, 2018,21(7):1004-1014.
DOI URL PMID |
[14] |
KAN L J, GROZHIK A V, VEDANAYAGAM J, et al. The m6A pathway facilitates sex determination in Drosophila [J]. Nature Communications, 2017,8:15737.
DOI URL PMID |
[15] |
HAUSSMANN I U, BODI Z, SANCHEZ-MORAN E, et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination [J]. Nature, 2016,540(7632):301-304.
DOI URL PMID |
[16] |
LENCE T, AKHTAR J, BAYER M, et al. m6A modulates neuronal functions and sex determination in Drosophila [J]. Nature, 2016,540(7632):242-247.
DOI URL PMID |
[17] |
PATIL D P, CHEN C K, PICKERING B F, et al. M(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016,537(7620):369-373.
DOI URL PMID |
[18] |
ROOST C, LYNCH S R, BATISTA P J, et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification[J]. Journal of the American Chemical Society, 2015,137(5):2107-2115.
DOI URL PMID |
[19] |
DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al. Topology of the human and mouse m 6 A RNA methylomes revealed by m 6 A-seq[J]. Nature, 2012,485(7397):201.
DOI URL PMID |
[20] |
WANG X, LU Z K, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014,505(7481):117-120.
URL PMID |
[21] |
MEYER K D, PATIL D P, ZHOU J, et al. 5' UTR m6A promotes cap-independent translation [J]. Cell, 2015,163(4):999-1010.
DOI URL PMID |
[22] |
MUSA J, ORTH M F, DALLMAYER M, et al. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis[J]. Oncogene, 2016,35(36):4675-4688.
DOI URL PMID |
[23] | IMAI Y, MATSUO N, OGAWA S, et al. Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation[J]. Molecular Brain Research, 1998,53(1/2):33-40. |
[24] |
HARTMANN A M, NAYLER O, SCHWAIGER F W, et al. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(Fyn)[J]. Molecular Biology of the Cell, 1999,10(11):3909-3926.
DOI URL PMID |
[25] |
STOILOV P, RAFALSKA I, STAMM S. YTH: a new domain in nuclear proteins[J]. Trends in Biochemical Sciences, 2002,27(10):495-497.
DOI URL PMID |
[26] | BERLIVET S, SCUTENAIRE J, DERAGON J M, et al. Readers of the m6A epitranscriptomic code [J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2019,1862(3):329-342. |
[27] |
SCUTENAIRE J, DERAGON J M, JEAN V, et al. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis [J]. The Plant Cell, 2018,30(5):986-1005.
DOI URL PMID |
[28] |
LI D Y, ZHANG H J, HONG Y B, et al. Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2014,32(6):1169-1186.
DOI URL |
[29] | JAIN D, PUNO M R, MEYDAN C, et al. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2[J]. eLife, 2018(7):e30919. |
[30] |
PATIL D P, PICKERING B F, JAFFREY S R. Reading m6A in the Transcriptome: m6A-Binding Proteins [J]. Trends in Cell Biology, 2018,28(2):113-127.
DOI URL PMID |
[31] |
ARRIBAS-HERNÁNDEZ L, BRODERSEN P. Occurrence and functions of m6A and other covalent modifications in plant mRNA [J]. Plant Physiology, 2020,182(1):79-96.
DOI URL PMID |
[32] |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N6-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399.
DOI URL PMID |
[33] |
LINDER B, GROZHIK A V, OLARERIN-GEORGE A O, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome [J]. Nature Methods, 2015,12(8):767-772.
DOI URL PMID |
[34] |
WEI L H, SONG P Z, WANG Y, et al. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis [J]. The Plant Cell, 2018,30(5):968-985.
URL PMID |
[35] |
REICHEL M, KÖSTER T, STAIGER D. Marking RNA: m6A writers, readers, and functions in Arabidopsis [J]. Journal of Molecular Cell Biology, 2019,11(10):899-910.
DOI URL PMID |
[36] |
LI Y L, WANG X L, LI C P, et al. Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification[J]. RNA Biology, 2014,11(9):1180-1188.
DOI URL PMID |
[37] |
PIEKNA-PRZYBYLSKA D, DECATUR W A, FOURNIER M J. The 3D rRNA modification maps database: with interactive tools for ribosome analysis[J]. Nucleic Acids Research, 2008,36(Database issue):D178-D183.
DOI URL PMID |
[38] |
KHATTER H, MYASNIKOV A G, NATCHIAR S K, et al. Structure of the human 80S ribosome[J]. Nature, 2015,520(7549):640-645.
DOI URL PMID |
[39] |
LUO S, TONG L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain[J]. PNAS, 2014,111(38):13834-13839.
DOI URL PMID |
[40] |
THELER D, DOMINGUEZ C, BLATTER M, et al. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA[J]. Nucleic Acids Research, 2014,42(22):13911-13919.
DOI URL PMID |
[41] |
XU C, WANG X, LIU K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain [J]. Nature Chemical Biology, 2014,10(11):927-929.
DOI URL PMID |
[42] |
XU C, LIU K, AHMED H, et al. Structural basis for the discriminative recognition ofN6-methyladenosine RNA by the human YT521-B homology domain family of proteins[J]. Journal of Biological Chemistry, 2015,290(41):24902-24913.
DOI URL |
[43] |
ZHU T T, ROUNDTREE I A, WANG P, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine[J]. Cell Research, 2014,24(12):1493-1496.
DOI URL PMID |
[44] |
LI F D, ZHAO D B, WU J H, et al. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition [J]. Cell Research, 2014,24(12):1490-1492.
DOI URL PMID |
[45] |
YANG X F, LI H T, HUANG Y Y, et al. The dataset for protein-RNA binding affinity[J]. Protein Science, 2013,22(12):1808-1811.
DOI URL |
[46] |
MA C, LIAO S H, ZHU Z L. Crystal structure of human YTHDC2 YTH domain[J]. Biochemical and Biophysical Research Communications, 2019,518(4):678-684.
DOI URL PMID |
[47] |
WANG C Y, ZHU Y W, BAO H Y, et al. A novel RNA-binding mode of the YTH domain reveals the mechanism for recognition of determinant of selective removal by Mmi1[J]. Nucleic Acids Research, 2016,44(2):969-982.
DOI URL PMID |
[48] |
XIAO W, ADHIKARI S, DAHAL U, et al. Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing [J]. Molecular Cell, 2016,61(4):507-519.
DOI URL PMID |
[49] |
ZHANG Z Y, THELER D, KAMINSKA K H, et al. The YTH domain is a novel RNA binding domain[J]. Journal of Biological Chemistry, 2010,285(19):14701-14710.
DOI URL |
[50] |
KE S D, PANDYA-JONES A, SAITO Y, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do speci
PMID |
fy cytoplasmic turnover[J]. Genes & Development, 2017,31(10):990-1006.
DOI URL PMID |
|
[51] |
ROUNDTREE I A, GUAN-ZHENG L, ZIJIE Z, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. eLife, 2017,6.
DOI URL PMID |
[52] |
DU H, ZHAO Y, HE J Q, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nature Communications, 2016,7:12626.
DOI URL PMID |
[53] |
HUBSTENBERGER A, COUREL M, BÉNARD M, et al. P-body purification reveals the condensation of repressed mRNA regulons[J]. Molecular Cell, 2017,68(1):144-157.
DOI URL PMID |
[54] |
YANG Y, FAN X J, MAO M W, et al. Extensive translation of circular RNAs driven by N6-methyladenosine [J]. Cell Research, 2017,27(5):626-641.
DOI URL PMID |
[55] |
WENG Y L, WANG X, AN R, et al. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system [J]. Neuron, 2018,97(2):313-325.
DOI URL PMID |
[56] |
KENNEDY E M, BOGERD H P, KORNEPATI A V R, et al. Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression [J]. Cell Host & Microbe, 2016,19(5):675-685.
DOI URL PMID |
[57] |
SHI H L, WANG X, LU Z K, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA [J]. Cell Research, 2017,27(3):315-328.
DOI URL PMID |
[58] |
LI A, CHEN Y S, PING X L, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation [J]. Cell Research, 2017,27(3):444-447.
DOI URL PMID |
[59] |
TANABE A, TANIKAWA K, TSUNETOMI M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated[J]. Cancer Letters, 2016,376(1):34-42.
DOI URL PMID |
[60] |
HSU P J, ZHU Y F, MA H H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Research, 2017,27(9):1115-1127.
DOI URL PMID |
[61] |
ENGREITZ J M, PANDYA-JONES A, MCDONEL P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome[J]. Science, 2013,341(6147):1237973.
DOI URL PMID |
[62] |
WU C L, CHEN W X, HE J C, et al. Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection[J]. Science Advances, 2020, 6(34):eaba0647.
DOI URL PMID |
[63] |
SOH Y Q S, MIKEDIS M M, KOJIMA M, et al. Meioc maintains an extended meiotic prophase I in mice[J]. PLoS Genetics, 2017,13(4):e1006704.
DOI URL PMID |
[64] |
ABBY E, TOURPIN S, RIBEIRO J, et al. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts[J]. Nature Communications, 2016,7:10324.
URL PMID |
[65] |
WOJTAS M N, PANDEY R R, MENDEL M, et al. Regulation of m6A transcripts by the 3'→5' RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline [J]. Molecular Cell, 2017,68(2):374-387.
DOI URL PMID |
[66] |
BAILEY A S, BATISTA P J, GOLD R S, et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline[J]. eLife. 2017,6:e26116.
DOI URL PMID |
[67] |
ZHANG C X, CHEN Y S, SUN B F, et al. m6A modulates haematopoietic stem and progenitor cell specification [J]. Nature, 2017,549(7671):273-276.
DOI URL PMID |
[68] |
GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation [J]. Science, 2015,347(6225):1002-1006.
DOI URL PMID |
[69] |
HOU J J, ZHANG H, LIU J, et al. Correction to: YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Molecular Cancer, 2020,19:137.
DOI URL PMID |
[70] |
SHEN L S, LIANG Z, GU X F, et al. N(6)-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis[J]. Developmental Cell, 2016,38(2):186-200.
DOI URL PMID |
[71] | BODI Z, ZHONG S L, MEHRA S, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3' end and reduced levels cause developmental defects[J]. Frontiers in Plant Science, 2012,3:48. |
[72] | RŮŽIČKA K, ZHANG M, CAMPILHO A, et al. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI [J]. New Phytologist, 2017,215(1):157-172. |
[73] | ARRIBAS-HERNÁNDEZ L, BRESSENDORFF S, HANSEN M H, et al. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis [J]. The Plant Cell, 2018,30(5):952-967. |
[74] | ARRIBAS-HERNÁNDEZ L, SIMONINI S, HANSEN M H, et al. Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis [J]. Development, 2020,174(14):dev189134. |
[75] | SHI H L, ZHANG X L, WENG Y L, et al. m6A facilitates Hippocampus-dependent learning and memory through YTHDF1 [J]. Nature, 2018,563(7730):249-253. |
[76] | LIU X X, SHIMADA T, OTOWA T, et al. Genome-wide association study of autism spectrum disorder in the east Asian populations[J]. Autism Research, 2016,9(3):340-349. |
[77] | ZHOU J, WAN J, GAO X W, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015,526(7574):591-594. |
[78] | XIANG Y, LAURENT B, HSU C H, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response [J]. Nature, 2017,543(7646):573-576. |
[79] | LI Z H, WANG R C, GAO Y Y, et al. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1[J]. The New Phytologist, 2017,216(4):1205-1222. |
[80] | LI Y Z, BEDI R K, MOROZ-OMORI E V, et al. Structural and dynamic insights into redundant function of YTHDF proteins[J]. Journal of Chemical Information and Modeling, 2017: acs.jcim.0c01029. |
[81] | TANABE A, KONNO J, TANIKAWA K, et al. Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene[J]. Gene, 2014,535(1):24-32. |
[82] | DAI X X, GONZALEZ G, LI L, et al. YTHDF2 binds to 5-methylcytosine in RNA and modulates the maturation of ribosomal RNA[J]. Analytical Chemistry, 2020,92(1):1346-1354. |
[83] | ZHENG Q L, GAN H L, YANG F L, et al. Cytoplasmic m1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m1A-methylated IGF1R [J]. Cell Discovery, 2020,6:12. |
[84] | HORNBECK P V, ZHANG B, MURRAY B, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations[J]. Nucleic Acids Research, 2015,43(D1):D512-D520. |
[85] | THINON E, SERWA R A, BRONCEL M, et al. Global profiling of co-and post-translationally N-myristoylated proteomes in human cells[J]. Nature Communications, 2014,5:4919. |
[86] | TIRUMURU N, ZHAO B S, LU W X, et al. Correction: N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression[J]. eLife, 2017,6:15528. |
[87] | LICHINCHI G, GAO S, SALETORE Y, et al. Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells [J]. Nature Microbiology, 2016,1(4):16011. |
[88] | LICHINCHI G, ZHAO B S, WU Y G, et al. Dynamics of human and viral RNA methylation during zika virus infection[J]. Cell Host & Microbe, 2016,20(5):666-673. |
[89] | DIXIT D, XIE Q, RICH J N, et al. Messenger RNA methylation regulates glioblastoma tumorigenesis[J]. Cancer Cell, 2017,31(4):474-475. |
[90] | ZHANG S C, ZHAO B S, ZHOU A D, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program [J]. Cancer Cell, 2017,31(4):591-606. |
[91] | ZHANG C Z, ZHI W I, LU H Q, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells [J]. Oncotarget, 2016,7(40):64527-64542. |
[92] | KWOK C T, MARSHALL A D, RASKO J E J, et al. Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia [J]. Journal of Hematology & Oncology, 2017,10(1):39. |
[93] | PI J N, WANG W, JI M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7 [J]. Cancer Research, 2020: canres.0066.2020. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||