[1] |
ANJUM N A, GILL R, KAUSHIK M, et al. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance[J]. Frontiers in Plant Science, 2015, 6: 210.
|
[2] |
KUMAR S, ASIF M H, CHAKRABARTY D, et al. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions[J]. Functional & Integrative Genomics, 2011, 11(2): 259-273.
|
[3] |
YI H, RAVILIOUS G E, GALANT A, et al. From sulfur to homoglutathione: thiol metabolism in soybean[J]. Amino Acids, 2010, 39(4): 963-978.
|
[4] |
OHKAMA N, TAKEI K, SAKAKIBARA H, et al. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2002, 43(12): 1493-1501.
|
[5] |
LEUSTEK T, MARTIN M N, BICK J A, et al. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 141-165.
|
[6] |
LEUSTEK T, SAITO K. Sulfate transport and assimilation in plants[J]. Plant Physiology, 1999, 120(3): 637-644.
|
[7] |
ÁLVAREZ C, ÁNGELES BERMÚDEZ M, ROMERO L C, et al. Cysteine homeostasis plays an essential role in plant immunity[J]. The New Phytologist, 2012, 193(1): 165-177.
|
[8] |
TAKAHASHI H, KOPRIVA S, GIORDANO M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62: 157-184.
|
[9] |
XIANG C B, WERNER B L, CHRISTENSEN E M, et al. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels[J]. Plant Physiology, 2001, 126(2): 564-574.
|
[10] |
NARAYAN O P, KUMAR P, YADAV B, et al. Sulfur nutrition and its role in plant growth and development[J]. Plant Signaling & Behavior, 2022: 2030082.
|
[11] |
SHAWL, ASSEFA. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia[J]. Heliyon, 2021, 7(3): e06614.
|
[12] |
马强. 土壤与植物中的硫素营养研究进展[J]. 农技服务, 2011, 28(2): 165-167.
|
[13] |
SMITH F W, EALING P M, HAWKESFORD M J, et al. Plant members of a family of sulfate transporters reveal functional subtypes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(20): 9373-9377.
|
[14] |
ROUACHED H, BERTHOMIEU P, EL KASSIS E, et al. Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2[J]. The Journal of Biological Chemistry, 2005, 280(16): 15976-15983.
|
[15] |
ARAVIND L, KOONIN E V. The STAS domain-a link between anion transporters and antisigma-factor antagonists[J]. Current Biology: CB, 2000, 10(2): R53-R55.
|
[16] |
YOSHIMOTO N, INOUE E, SAITO K, et al. Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis[J]. Plant Physiology, 2003, 131(4): 1511-1517.
|
[17] |
TAKAHASHI H, WATANABE-TAKAHASHI A, SMITH F W, et al. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. The Plant Journal, 2000, 23(2): 171-182.
|
[18] |
HOWARTH J R, FOURCROY P, DAVIDIAN J C, et al. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae[J]. Planta, 2003, 218(1): 58-64.
|
[19] |
VAROL C, MILDNER A, JUNG S. Macrophages: development and tissue specialization[J]. Annual Review of Immunology, 2015, 33: 643-675.
|
[20] |
GASBER A, KLAUMANN S, TRENTMANN O, et al. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate[J]. Plant Biology, 2011, 13(5): 710-718.
|
[21] |
ZUBER H, DAVIDIAN J C, WIRTZ M, et al. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization[J]. BMC Plant Biology, 2010, 10: 78.
|
[22] |
KATAOKA T, WATANABE-TAKAHASHI A, HAYASHI N, et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis[J]. The Plant Cell, 2004, 16(10): 2693-2704.
|
[23] |
ZHANG H J, HAO X Y, ZHANG J J, et al. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium[J]. Protoplasma, 2022, 259(1): 127-140.
|
[24] |
YAMAJI N, TAKEMOTO Y, MIYAJI T, et al. Erratum: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node[J]. Nature, 2017, 543(7643): 136.
|
[25] |
VATANSEVER R, KOC I, OZYIGIT I I, et al. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.)[J]. Planta, 2016, 244(6): 1167-1183.
|
[26] |
QIN, HUANG. The SULTR gene family in maize (Zea mays L.): gene cloning and expression analyses under sulfate starvation and abiotic stress[J]. Journal of Plant Physiology, 2018, 220: 24-33.
|
[27] |
WANG L, CHEN K H, ZHOU M. Structure and function of an Arabidopsis thaliana sulfate transporter[J]. Nature Communications, 2021, 12: 4455.
|
[28] |
ROUACHED H, WIRTZ M, ALARY R, et al. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis[J]. Plant Physiology, 2008, 147(2): 897-911.
|
[29] |
BARBERON M, BERTHOMIEU P, CLAIROTTE M, et al. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2[J]. The New Phytologist, 2008, 180(3): 608-619.
|
[30] |
MARUYAMA-NAKASHITA A, INOUE E, WATANABE-TAKAHASHI A, et al. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways[J]. Plant Physiology, 2003, 132(2): 597-605.
|
[31] |
MARUYAMA-NAKASHITA A, WATANABE-TAKAHASHI A, INOUE E, et al. Sulfur-responsive elements in the 3'-nontranscribed intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency[J]. The Plant Cell, 2015, 27(4): 1279-1296.
|
[32] |
RAE A L, SMITH F W. Localisation of expression of a high-affinity sulfate transporter in barley roots[J]. Planta, 2002, 215(4): 565-568.
|
[33] |
VIDMAR J J, SCHJOERRING J K, TOURAINE B, et al. Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare[J]. Plant Molecular Biology, 1999, 40(5): 883-892.
|
[34] |
FRACHISSE J M, THOMINE S, COLCOMBET J, et al. Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells[J]. Plant Physiology, 1999, 121(1): 253-262.
|
[35] |
KATAOKA T, HAYASHI N, YAMAYA T, et al. Root-to-shoot transport of sulfate in Arabidopsis. evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature[J]. Plant Physiology, 2004, 136(4): 4198-4204.
|
[36] |
TAKAHASHI H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination[J]. Journal of Experimental Botany, 2019, 70(16): 4075-4087.
|
[37] |
CAO M J, WANG Z, WIRT Z M, et al. SULTR 3.1 is a chloroplast-10 calized sulfate transporter in Arabidopsis thaliand[J]. Plant Journal, 2013, 73(4):607-616.
|
[38] |
BANERJEE S. Plant sulfate transporters dealing with drought and salinity stress-ScienceDirect[J]. Transporters and Plant Osmotic Stress, 2021:77-87.
|
[39] |
MARUYAMA-NAKASHITA A, NAKAMURA Y, WATANABE-TAKAHASHI A, et al. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots[J]. The Plant Journal, 2005, 42(3): 305-314.
|
[40] |
盛大海, 刘元英, 李广宇. 水稻源库关系研究进展与应用[J]. 东北农业大学学报, 2009, 40(5): 117-122.
|
[41] |
霍中洋, 叶全宝, 李华, 等. 水稻源库关系研究进展[J]. 中国农学通报, 2002, 18(6): 72-77, 148.
|
[42] |
郑华, 屠乃美. 水稻源库关系研究现状与展望[J]. 作物研究, 2000, 14(3): 37-44.
|
[43] |
ROUACHED H. Multilevel coordination of phosphate and sulfate homeostasis in plants[J]. Plant Signaling & Behavior, 2011, 6(7): 952-955.
|
[44] |
曹恭, 梁鸣早. 硫: 平衡栽培体系中植物必需的中量元素[J]. 土壤肥料, 2003(1): 50-52, 49.
|
[45] |
BUCHNER P, PARMAR S, KRIEGEL A, et al. The sulfate transporter family in wheat: tissue-specific gene expression in relation to nutrition[J]. Molecular Plant, 2010, 3(2): 374-389.
|
[46] |
MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5): 779-789.
|
[47] |
SMITH F W, HAWKESFORD M J, EALING P M, et al. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter[J]. The Plant Journal, 1997, 12(4): 875-884.
|
[48] |
GUTIERREZ-MARCOS J F, ROBERTS M A, CAMPBELL E I, et al. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 13377-13382.
|
[49] |
KAWASHIMA C G, YOSHIMOTO N, MARUYAMA-NAKASHITA A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types[J]. The Plant Journal, 2009, 57(2): 313-321.
|
[50] |
MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation[J]. Journal of Experimental Botany, 2004, 55(404): 1843-1849.
|
[51] |
VAUCLARE P, KOPRIVA S, FELL D, et al. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols[J]. The Plant Journal, 2002, 31(6): 729-740.
|
[52] |
LAPPARTIENT A G, VIDMAR J J, LEUSTEK T, et al. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. The Plant Journal, 1999, 18(1): 89-95.
|
[53] |
KAWASHIMA C G, MATTHEWMAN C A, HUANG S Q, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis[J]. The Plant Journal, 2011, 66(5): 863-876.
|
[54] |
JONES-RHOADES M W, BARTEL D P, BARTEL B. MicroRNAS and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57: 19-53.
|
[55] |
MARUYAMA-NAKASHITA A, NAKAMURA Y, TOHGE T, et al. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism[J]. The Plant Cell, 2006, 18(11): 3235-3251.
|
[56] |
WANG Z Y, RUAN W Y, SHI J, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14953-14958.
|
[57] |
GALLARDO K, COURTY P E, LE SIGNOR C, et al. Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions[J]. Frontiers in Plant Science, 2014, 5: 580.
|
[58] |
JONES-RHOADES M W, BARTEL D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799.
|
[59] |
SHINDO M, SHIMOMURA K, YAMAGUCHI S, et al. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice[J]. Plant Direct, 2018, 2(4): e00050.
|