Journal of Zhejiang Agricultural Sciences ›› 2023, Vol. 64 ›› Issue (11): 2801-2806.DOI: 10.16178/j.issn.0528-9017.20220947
Previous Articles Next Articles
Received:
2022-09-07
Online:
2023-11-11
Published:
2023-11-22
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20220947
改性生物炭类型 | 农药 | 表现 | 文献 |
---|---|---|---|
蒸汽活化稻壳生物炭 | 克百威 | 水蒸气活化进一步提高了生物炭产率和吸附量。700 ℃生产的蒸汽活化生物炭在pH值为5附近出现吸附最大值161 mg·g-1 | [ |
同时共热解热空气活化 | 2,4-D(2,4-二氯苯氧酸) | 与传统缺氧热解产生的生物炭相比,850 ℃共热解的生物具有相似的微孔表面积(约330 m2·g-1),但约为中孔表面积是其2.5倍,对2,4-D的吸附量达10倍以上 | [ |
H3PO4,NaOH改性椰壳生物炭 | 二嗪磷 | 比表面积关系为BC3(NaOH改性生物炭)>BC2 (H3PO4改性生物炭)>BC4(原生物炭),且BC3对二嗪磷具有最大的吸附量。在pH值为7,BC3作为吸附剂剂量为5.0 g·L-1时,二嗪磷去除率高达98.96% | [ |
ZnCl2活化烟草生物炭 | 毒死蜱 | 与原生物炭相比,AB-ZnCl2的SSA提高了1 775倍,二者最大吸附量分别为683.30和1 602.40 μg·g-1 | [ |
KOH活化花生壳生物炭 | 2,4-D | 比表面积由于活化增加,最大吸附量活化生物炭250 mg·g-1>热解生物炭3.02 mg·g-1 | [ |
掺p玉米秸秆生物炭 | 三嗪类 | 掺杂增加了表面积和生物炭上的—COOH和—PO3基团的数量,从而促进吸附过程,来自玉米秸秆(CSWP)的掺杂生物炭,最大吸附量可达79.6 mg·g-1 | [ |
纳米石榴皮生物炭 | 毒死蜱 | 最大吸附量比石榴皮提高了25倍,10 min内吸附率约为90% | [ |
酸、碱、磁化改性700 ℃热解玉米秸秆生物炭 | 多菌灵 | 3种改性生物炭对多菌灵的吸附能力为磁化生物炭>酸化生物炭>碱化生物炭。磁化生物炭的最大吸附量达到108.1 mg·g-1 | [ |
黏土-白杨生物炭复合材料 | 草甘膦 | 复合材料比黏土和生物炭具有更好的吸附能力,吸附动力学符合准二级动力学模型,与 Langmuir模型拟合较好 | [ |
载铁风车草生物炭 | 毒死蜱 | 铁浸渍的生物炭的表面比原始生物炭更复杂,更多孔,表现出比原始生物炭更高的吸附能力 | [ |
改性生物炭类型 | 农药 | 表现 | 文献 |
---|---|---|---|
蒸汽活化稻壳生物炭 | 克百威 | 水蒸气活化进一步提高了生物炭产率和吸附量。700 ℃生产的蒸汽活化生物炭在pH值为5附近出现吸附最大值161 mg·g-1 | [ |
同时共热解热空气活化 | 2,4-D(2,4-二氯苯氧酸) | 与传统缺氧热解产生的生物炭相比,850 ℃共热解的生物具有相似的微孔表面积(约330 m2·g-1),但约为中孔表面积是其2.5倍,对2,4-D的吸附量达10倍以上 | [ |
H3PO4,NaOH改性椰壳生物炭 | 二嗪磷 | 比表面积关系为BC3(NaOH改性生物炭)>BC2 (H3PO4改性生物炭)>BC4(原生物炭),且BC3对二嗪磷具有最大的吸附量。在pH值为7,BC3作为吸附剂剂量为5.0 g·L-1时,二嗪磷去除率高达98.96% | [ |
ZnCl2活化烟草生物炭 | 毒死蜱 | 与原生物炭相比,AB-ZnCl2的SSA提高了1 775倍,二者最大吸附量分别为683.30和1 602.40 μg·g-1 | [ |
KOH活化花生壳生物炭 | 2,4-D | 比表面积由于活化增加,最大吸附量活化生物炭250 mg·g-1>热解生物炭3.02 mg·g-1 | [ |
掺p玉米秸秆生物炭 | 三嗪类 | 掺杂增加了表面积和生物炭上的—COOH和—PO3基团的数量,从而促进吸附过程,来自玉米秸秆(CSWP)的掺杂生物炭,最大吸附量可达79.6 mg·g-1 | [ |
纳米石榴皮生物炭 | 毒死蜱 | 最大吸附量比石榴皮提高了25倍,10 min内吸附率约为90% | [ |
酸、碱、磁化改性700 ℃热解玉米秸秆生物炭 | 多菌灵 | 3种改性生物炭对多菌灵的吸附能力为磁化生物炭>酸化生物炭>碱化生物炭。磁化生物炭的最大吸附量达到108.1 mg·g-1 | [ |
黏土-白杨生物炭复合材料 | 草甘膦 | 复合材料比黏土和生物炭具有更好的吸附能力,吸附动力学符合准二级动力学模型,与 Langmuir模型拟合较好 | [ |
载铁风车草生物炭 | 毒死蜱 | 铁浸渍的生物炭的表面比原始生物炭更复杂,更多孔,表现出比原始生物炭更高的吸附能力 | [ |
[1] | 刘玉灿, 董金坤, 秦昊, 等. 水中有机农药的去除方法研究进展[J]. 中国给水排水, 2020, 36(24): 45-53. |
[2] | FARGHALI R A, BASIONY M S, GABER S E, et al. Adsorption of organochlorine pesticides on modified porous Al30/bentonite: kinetic and thermodynamic studies[J]. Arabian Journal of Chemistry, 2020, 13(8): 6730-6740. |
[3] | SANZ-SANTOS E, ÁLVAREZ-TORRELLAS S, CEBALLOS L, et al. Application of sludge-based activated carbons for the effective adsorption of neonicotinoid pesticides[J]. Applied Sciences, 2021, 11(7): 3087. |
[4] | JIA Z Q, LI Y, LU S, et al. Treatment of organophosphate-contaminated wastewater by acidic hydrolysis and precipitation[J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 234-238. |
[5] | BOUHALA A, LAHMAR H, BENAMIRA M, et al. Photodegradation of organophosphorus pesticides in honey medium by solar light irradiation[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(6): 792-798. |
[6] | NAZAROVA E A, NAZAROV A V, EGOROVA D O, et al. Influence of destructive bacteria and red clover (Trifolium pratense L.) on the pesticides degradation in the soil[J]. Environmental Geochemistry and Health, 2022, 44(2): 399-408. |
[7] | Al-DABBAS M M, SHADERMA A A, Al-ANTARY T M, et al. Effect of ozonation on cypermethrin and chlorpyrifos pesticides residues degradation in tomato fruits[J]. Fresenius Environmental Bulletin, 2018, 27(10):6628-6633. |
[8] | NEAMTU C, TUTUNARU B, SAMIDE A, et al. Reducing the ecotoxicity of pesticide polluted waters by electrochemical methods[J]. Revista De Chimie, 2019, 70(5): 1574-1578. |
[9] | FILIPINAS J Q, RIVERA K K P, ONG D C, et al. Removal of sodium diclofenac from aqueous solutions by rice hull biochar[J]. Biochar, 2021, 3(2): 189-200. |
[10] | PHUONG D T M, LOC N X. Rice straw biochar and magnetic rice straw biochar for safranin O adsorption from aqueous solution[J]. Water, 2022, 14(2): 186. |
[11] | XIONG J, ZHOU M G, QU C C, et al. Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar[J]. Biochar, 2021, 3(1): 37-49. |
[12] | SUO F Y, LIU X, LI C S, et al. Mesoporous activated carbon from starch for superior rapid pesticides removal[J]. International Journal of Biological Macromolecules, 2019, 121: 806-813. |
[13] | MEHMETI V, HALILI J, BERISHA A. Which is better for Lindane pesticide adsorption, graphene or graphene oxide? An experimental and DFT study[J]. Journal of Molecular Liquids, 2022, 347: 118345. |
[14] | D'ARCHIVIO A A, MAGGI M A, ODOARDI A, et al. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate[J]. Nanotechnology, 2018, 29(6): 065701. |
[15] | DURÁN E, BUENO S, HERMOSÍN M C, et al. Optimizing a low added value bentonite as adsorbent material to remove pesticides from water[J]. Science of the Total Environment, 2019, 672: 743-751. |
[16] | YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497. |
[17] | VIGNESHWARAN S, SIRAJUDHEEN P, KARTHIKEYAN P, et al. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes[J]. Surfaces and Interfaces, 2021, 23: 100920. |
[18] | YANG L, TAN W F, MUMFORD K, et al. Effects of phosphorus-rich sawdust biochar sorption on heavy metals[J]. Separation Science and Technology, 2018, 53(17): 2704-2716. |
[19] | QIN P Z, HUANG D W, TANG R, et al. Enhanced adsorption of sulfonamide antibiotics in water by modified biochar derived from bagasse[J]. Open Chemistry, 2019, 17(1): 1309-1316. |
[20] | DAYAN F E. Current status and future prospects in herbicide discovery[J]. Plants, 2019, 8(9): 341. |
[21] | SUO F Y, YOU X W, MA Y Q, et al. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism[J]. Chemosphere, 2019, 235: 918-925. |
[22] | JEVROSIMOV I, KRAGULJ ISAKOVSKI M, APOSTOLOVIĆ T, et al. Mechanisms of alachlor and pentachlorobenzene adsorption on biochar and hydrochar originating from Miscanthus giganteus and sugar beet shreds[J]. Chemical Papers, 2021, 75(5): 2105-2120. |
[23] | KHORRAM M S, SARMAH A K, YU Y L. The effects of biochar properties on fomesafen adsorption-desorption capacity of biochar-amended soil[J]. Water, Air, and Soil Pollution, 2018, 229(3): 1-13. |
[24] | MANDAL A, SINGH N, PURAKAYASTHA T J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal[J]. Science of the Total Environment, 2017, 577: 376-385. |
[25] | ZHANG P, SUN H W, REN C, et al. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption[J]. Environmental Pollution, 2018, 234: 812-820. |
[26] | SBIZZARO M, CÉSAR SAMPAIO S, RINALDO DOS REIS R, et al. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems[J]. Journal of Molecular Liquids, 2021, 343: 117667. |
[27] | MAYAKADUWA S S, HERATH I, OK Y S, et al. Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars[J]. Environmental Science and Pollution Research International, 2017, 24(29): 22755-22763. |
[28] | GAO Y, JIANG Z, LI J J, et al. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust[J]. Environmental Research, 2019, 172: 561-568. |
[29] | CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar: a review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. |
[30] | CHOI S S, CHOI J H, KIM S S. Treatment of nickel ions in water phase using biochar prepared from Liriodendron tulipifera L[J]. Applied Chemistry for Engineering, 2017, 28(5): 529-533. |
[31] | KOŁTOWSKI M, CHARMAS B, SKUBISZEWSKA-ZIEBA J, et al. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity[J]. Ecotoxicology and Environmental Safety, 2017, 136: 119-125. |
[32] | GONG H B, TAN Z X, ZHANG L M, et al. Preparation of biochar with high absorbability and its nutrient adsorption-desorption behaviour[J]. Science of the Total Environment, 2019, 694: 133728. |
[33] | YAKOUT S M. Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics[J]. Bioremediation Journal, 2015, 19(2): 171-182. |
[34] | WANG W, MA X L, SUN J, et al. Adsorption of enrofloxacin on acid/alkali-modified corn stalk biochar[J]. Spectroscopy Letters, 2019, 52(7): 367-375. |
[35] | ZHANG Z L, LI Y, ZONG Y M, et al. Efficient removal of cadmium by salts modified-biochar: performance assessment, theoretical calculation, and quantitative mechanism analysis[J]. Bioresource Technology, 2022, 361: 127717. |
[36] | LIANG L P, XI F F, TAN W S, et al. Review of organic and inorganic pollutants removal by biochar and biochar-based composites[J]. Biochar, 2021, 3(3): 255-281. |
[37] | KEARNS J P, SHIMABUKU K K, KNAPPE D R U, et al. High temperature co-pyrolysis thermal air activation enhances biochar adsorption of herbicides from surface water[J]. Environmental Engineering Science, 2019, 36(6): 710-723. |
[38] | BAHARUM N A, NASIR H M, ISHAK M Y, et al. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar[J]. Arabian Journal of Chemistry, 2020, 13(7): 6106-6121. |
[39] | CELSO GONÇALVES A, ZIMMERMANN J, SCHWANTES D, et al. Renewable eco-friendly activated biochar from tobacco: kinetic, equilibrium and thermodynamics studies for chlorpyrifos removal[J]. Separation Science and Technology, 2022, 57(2): 159-179. |
[40] | TRIVEDI N S, KHARKAR R A, MANDAVGANE S A. 2, 4-Dichlorophenoxyacetic acid adsorption on adsorbent prepared from groundnut shell: effect of preparation conditions on equilibrium adsorption capacity[J]. Arabian Journal of Chemistry, 2019, 12(8): 4541-4549. |
[41] | HAMADEEN H M, ELKHATIB E A. Nanostructured modified biochar for effective elimination of chlorpyrifos from wastewater: enhancement, mechanisms and performance[J]. Journal of Water Process Engineering, 2022, 47: 102703. |
[42] | WANG Y R, MIAO J B, SALEEM M, et al. Enhanced adsorptive removal of carbendazim from water by FeCl3-modified corn straw biochar as compared with pristine, HCl and NaOH modification[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107024. |
[43] | RALLET D, PALTAHE A, TSAMO C, et al. Synthesis of clay-biochar composite for glyphosate removal from aqueous solution[J]. Heliyon, 2022, 8(3): e09112. |
[44] | TANG X Y, HUANG W D, GUO J J, et al. Use of Fe-impregnated biochar to efficiently sorb chlorpyrifos, reduce uptake by Allium fistulosum L., and enhance microbial community diversity[J]. Journal of Agricultural and Food Chemistry, 2017, 65(26): 5238-5243. |
[45] | ZHANG Z Q, ZHOU C H, YANG J M, et al. Preparation and characterization of apricot kernel shell biochar and its adsorption mechanism for atrazine[J]. Sustainability, 2022, 14(7): 4082. |
[46] | ZHAO L L, YANG F, JIANG Q, et al. Characterization of modified biochars prepared at low pyrolysis temperature as an efficient adsorbent for atrazine removal[J]. Environmental Science and Pollution Research International, 2018, 25(2): 1405-1417. |
[47] | BATOOL S, ALI SHAH A, ABU BAKAR A F, et al. Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum (Rambutan) fruit peel waste[J]. Chemosphere, 2022, 289: 133011. |
[48] | JACOB M M, PONNUCHAMY M, KAPOOR A, et al. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103904. |
[49] | LEE S, HAN J, RO H M. Interpreting the pH-dependent mechanism of simazine sorption to Miscanthus biochar produced at different pyrolysis temperatures for its application to soil[J]. Korean Journal of Chemical Engineering, 2018, 35(7): 1468-1476. |
[50] | IHSANULLAH I, KHAN M T, ZUBAIR M, et al. Removal of pharmaceuticals from water using sewage sludge-derived biochar: a review[J]. Chemosphere, 2022, 289: 133196. |
[51] | TULUN Ş, AKGÜL G, ALVER A, et al. Adaptive neuro-fuzzy interference system modelling for chlorpyrifos removal with walnut shell biochar[J]. Arabian Journal of Chemistry, 2021, 14(12): 103443. |
[52] | MA Y F, CHEN S Y, QI Y, et al. An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal[J]. Chemosphere, 2022, 291(Pt 1): 132707. |
[53] | CAO Y, JIANG S Q, ZHANG Y N, et al. Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105727. |
[54] | SZEWCZUK-KARPISZ K, TOMCZYK A, CELIŃSKA M, et al. Carboxin and diuron adsorption mechanism on sunflower husks biochar and goethite in the single/mixed pesticide solutions[J]. Materials, 2021, 14(10): 2584. |
[55] | MANDAL A, KUMAR A, SINGH N. Sorption mechanisms of pesticides removal from effluent matrix using biochar: conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments[J]. Journal of Environmental Management, 2021, 295: 113104. |
[1] | ZHU Jialiu, FENG Qing. Screening experiment of soil conditioner for direct seeding rice in saline-alkali soil [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(4): 848-853. |
[2] | . [J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(11): 2669-2672. |
[3] | . [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(2): 448-452. |
[4] | . [J]. ZHEJIANG NONGYE KEXUE, 2020, 61(7): 1331-1332. |
[5] | . [J]. ZHEJIANG NONGYE KEXUE, 2020, 61(7): 1370-1371. |
[6] | . [J]. ZHEJIANG NONGYE KEXUE, 2020, 61(2): 317-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||