Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (10): 2323-2337.DOI: 10.16178/j.issn.0528-9017.20230980
Previous Articles Next Articles
WANG Yu1(), YANG Kun2,*(
), RAO Weidong1, FENG Difei1, WANG Hong3, XIAO Jiujun4, ZHANG Shengguo1
Received:
2023-10-08
Online:
2024-10-11
Published:
2024-10-25
CLC Number:
WANG Yu, YANG Kun, RAO Weidong, FENG Difei, WANG Hong, XIAO Jiujun, ZHANG Shengguo. Inversion of pepper SPAD values from UAV hyperspectral data[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(10): 2323-2337.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230980
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 94.75 | 0.172 9 |
2 | 2 | 97.82 | 0.213 4 |
3 | 2 | 99.75 | 0.018 7 |
4 | 4 | 99.82 | 0.001 3 |
5 | 4 | 99.81 | 0.001 4 |
… | … | … | … |
Table 1 Contribution rate and RMSECV table based on the original spectrum
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 94.75 | 0.172 9 |
2 | 2 | 97.82 | 0.213 4 |
3 | 2 | 99.75 | 0.018 7 |
4 | 4 | 99.82 | 0.001 3 |
5 | 4 | 99.81 | 0.001 4 |
… | … | … | … |
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 100 |
2 | 4 | 51 |
3 | 1 | 46 |
4 | 2 | 45 |
… | … | … |
Table 2 The frequency sequence of selected bands based on the original spectrum
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 100 |
2 | 4 | 51 |
3 | 1 | 46 |
4 | 2 | 45 |
… | … | … |
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 91.75 | 0.256 2 |
2 | 2 | 93.82 | 0.167 1 |
4 | 3 | 99.77 | 0.001 6 |
6 | 5 | 99.85 | 0.001 2 |
7 | 5 | 99.73 | 0.002 1 |
… | … | … | … |
Table 3 Contribution rate and RMSECV table based on reciprocal logarithmic spectra
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 91.75 | 0.256 2 |
2 | 2 | 93.82 | 0.167 1 |
4 | 3 | 99.77 | 0.001 6 |
6 | 5 | 99.85 | 0.001 2 |
7 | 5 | 99.73 | 0.002 1 |
… | … | … | … |
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 19 | 82 |
2 | 3 | 52 |
3 | 5 | 41 |
4 | 4 | 40 |
5 | 6 | 39 |
6 | 8 | 39 |
… | … | … |
Table 4 Screening bands based on reciprocal logarithmic spectra and their corresponding selection frequency sequences
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 19 | 82 |
2 | 3 | 52 |
3 | 5 | 41 |
4 | 4 | 40 |
5 | 6 | 39 |
6 | 8 | 39 |
… | … | … |
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 93.35 | 0.372 7 |
2 | 2 | 95.74 | 0.187 2 |
3 | 2 | 99.29 | 0.073 1 |
4 | 4 | 99.93 | 0.006 8 |
5 | 4 | 99.82 | 0.007 1 |
… | … | … | … |
Table 5 Contribution rate and RMSECV based on multivariate scattering correction spectra
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 93.35 | 0.372 7 |
2 | 2 | 95.74 | 0.187 2 |
3 | 2 | 99.29 | 0.073 1 |
4 | 4 | 99.93 | 0.006 8 |
5 | 4 | 99.82 | 0.007 1 |
… | … | … | … |
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 79 |
2 | 4 | 52 |
3 | 3 | 48 |
4 | 6 | 41 |
… | … | … |
Table 6 Screening bands based on multivariate scattering correction spectra and their corresponding selection frequency sequence
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 79 |
2 | 4 | 52 |
3 | 3 | 48 |
4 | 6 | 41 |
… | … | … |
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 84.45 | 0.342 3 |
2 | 2 | 91.45 | 0.135 6 |
3 | 3 | 98.54 | 0.021 2 |
5 | 3 | 98.34 | 0.024 5 |
… | … | … | … |
Table 7 Contribution rate and RMSECV table based on remove envelope spectrum
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 84.45 | 0.342 3 |
2 | 2 | 91.45 | 0.135 6 |
3 | 3 | 98.54 | 0.021 2 |
5 | 3 | 98.34 | 0.024 5 |
… | … | … | … |
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 77 |
2 | 15 | 58 |
3 | 19 | 58 |
… | … | … |
Table 8 The sequence of bands screened based on remove envelope spectrum and their corresponding selection frequencies
排序 | 波段 | 被选用频次 |
---|---|---|
1 | 20 | 77 |
2 | 15 | 58 |
3 | 19 | 58 |
… | … | … |
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 68.18 | 0.559 8 |
4 | 3 | 99.29 | 0.124 8 |
5 | 4 | 99.56 | 0.010 7 |
7 | 4 | 99.86 | 0.010 6 |
8 | 4 | 99.67 | 0.010 8 |
… | … | … | … |
Table 9 Contribution rate and RMSECV table based on first-order differential spectroscopy
选择变量数 | 主成分数 | 贡献率/% | RMSECV |
---|---|---|---|
1 | 1 | 68.18 | 0.559 8 |
4 | 3 | 99.29 | 0.124 8 |
5 | 4 | 99.56 | 0.010 7 |
7 | 4 | 99.86 | 0.010 6 |
8 | 4 | 99.67 | 0.010 8 |
… | … | … | … |
排序 | 波段 | 被选用频次/次 |
---|---|---|
1 | 2 | 94 |
2 | 12 | 53 |
3 | 13 | 41 |
4 | 14 | 37 |
5 | 3 | 36 |
6 | 4 | 35 |
7 | 15 | 26 |
… | … | … |
Table 10 The screening bands based on the first-order differential spectroscopy and the corresponding frequency sequence
排序 | 波段 | 被选用频次/次 |
---|---|---|
1 | 2 | 94 |
2 | 12 | 53 |
3 | 13 | 41 |
4 | 14 | 37 |
5 | 3 | 36 |
6 | 4 | 35 |
7 | 15 | 26 |
… | … | … |
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.44 | 6.37 | 1.35 | 0.48 | 2.28 | 1.39 |
lg(1/R) | 0.63 | 5.20 | 1.65 | 0.66 | 1.80 | 1.76 |
M(R) | 0.54 | 5.94 | 1.44 | 0.48 | 2.26 | 1.40 |
RE | 0.56 | 6.03 | 1.42 | 0.54 | 2.49 | 1.27 |
R' | 0.69 | 4.74 | 1.81 | 0.71 | 2.22 | 1.42 |
Table 11 SPAD value inversion model based on PLSR
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.44 | 6.37 | 1.35 | 0.48 | 2.28 | 1.39 |
lg(1/R) | 0.63 | 5.20 | 1.65 | 0.66 | 1.80 | 1.76 |
M(R) | 0.54 | 5.94 | 1.44 | 0.48 | 2.26 | 1.40 |
RE | 0.56 | 6.03 | 1.42 | 0.54 | 2.49 | 1.27 |
R' | 0.69 | 4.74 | 1.81 | 0.71 | 2.22 | 1.42 |
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.53 | 6.14 | 1.40 | 0.58 | 2.51 | 1.26 |
lg(1/R) | 0.81 | 4.21 | 2.04 | 0.83 | 1.57 | 2.13 |
M(R) | 0.60 | 6.05 | 1.42 | 0.59 | 2.22 | 1.43 |
RE | 0.67 | 5.16 | 1.66 | 0.64 | 2.57 | 1.23 |
R' | 0.68 | 4.97 | 1.73 | 0.70 | 2.55 | 1.24 |
Table 12 SPAD value inversion model based on RF
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.53 | 6.14 | 1.40 | 0.58 | 2.51 | 1.26 |
lg(1/R) | 0.81 | 4.21 | 2.04 | 0.83 | 1.57 | 2.13 |
M(R) | 0.60 | 6.05 | 1.42 | 0.59 | 2.22 | 1.43 |
RE | 0.67 | 5.16 | 1.66 | 0.64 | 2.57 | 1.23 |
R' | 0.68 | 4.97 | 1.73 | 0.70 | 2.55 | 1.24 |
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE2 | RPD | |
R | 0.41 | 6.52 | 1.32 | 0.46 | 2.35 | 1.36 |
lg(1/R) | 0.71 | 4.78 | 1.78 | 0.77 | 1.67 | 1.90 |
M(R) | 0.64 | 5.27 | 1.63 | 0.46 | 2.63 | 1.20 |
RE | 0.70 | 4.71 | 1.82 | 0.79 | 1.54 | 2.05 |
R' | 0.74 | 4.34 | 1.98 | 0.57 | 2.12 | 1.49 |
Table 13 SPAD value inversion model based on BPNN
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE2 | RPD | |
R | 0.41 | 6.52 | 1.32 | 0.46 | 2.35 | 1.36 |
lg(1/R) | 0.71 | 4.78 | 1.78 | 0.77 | 1.67 | 1.90 |
M(R) | 0.64 | 5.27 | 1.63 | 0.46 | 2.63 | 1.20 |
RE | 0.70 | 4.71 | 1.82 | 0.79 | 1.54 | 2.05 |
R' | 0.74 | 4.34 | 1.98 | 0.57 | 2.12 | 1.49 |
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.51 | 5.98 | 1.43 | 0.36 | 2.77 | 1.14 |
lg(1/R) | 0.74 | 4.63 | 1.85 | 0.68 | 1.85 | 1.71 |
M(R) | 0.70 | 5.27 | 1.63 | 0.61 | 2.02 | 1.57 |
RE | 0.60 | 5.48 | 1.57 | 0.49 | 2.40 | 1.32 |
R' | 0.72 | 4.63 | 1.85 | 0.71 | 2.58 | 1.23 |
Table 14 SPAD value inversion model based on LSSVM
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.51 | 5.98 | 1.43 | 0.36 | 2.77 | 1.14 |
lg(1/R) | 0.74 | 4.63 | 1.85 | 0.68 | 1.85 | 1.71 |
M(R) | 0.70 | 5.27 | 1.63 | 0.61 | 2.02 | 1.57 |
RE | 0.60 | 5.48 | 1.57 | 0.49 | 2.40 | 1.32 |
R' | 0.72 | 4.63 | 1.85 | 0.71 | 2.58 | 1.23 |
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.59 | 5.82 | 1.47 | 0.52 | 2.36 | 1.34 |
lg(1/R) | 0.70 | 4.73 | 1.81 | 0.77 | 1.67 | 1.89 |
M(R) | 0.58 | 5.90 | 1.45 | 0.66 | 1.90 | 1.66 |
RE | 0.58 | 5.72 | 1.50 | 0.56 | 2.47 | 1.28 |
R' | 0.81 | 3.57 | 2.40 | 0.84 | 1.41 | 2.24 |
Table 15 SPAD value inversion model based on GA-LSSVM
参数 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
R | 0.59 | 5.82 | 1.47 | 0.52 | 2.36 | 1.34 |
lg(1/R) | 0.70 | 4.73 | 1.81 | 0.77 | 1.67 | 1.89 |
M(R) | 0.58 | 5.90 | 1.45 | 0.66 | 1.90 | 1.66 |
RE | 0.58 | 5.72 | 1.50 | 0.56 | 2.47 | 1.28 |
R' | 0.81 | 3.57 | 2.40 | 0.84 | 1.41 | 2.24 |
[1] | 张沛健, 尚秀华, 吴志华. 基于图像处理技术的5种红树林叶片形态特征及叶绿素相对含量的估测[J]. 热带作物学报, 2020, 41(3): 496-503. |
[2] | JANG S, HWANG Y, LEE H J, et al. Selecting significant wavelengths to predict chlorophyll content of grafted cucumber seedlings using hyperspectral images[J]. Journal of Remote Sensing, 2018, 34: 681-692. |
[3] | 陈澜, 常庆瑞, 高一帆, 等. 猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 79-89, 98. |
[4] | 马春艳, 王艺琳, 翟丽婷, 等. 冬小麦不同叶位叶片的叶绿素含量高光谱估算模型[J]. 农业机械学报, 2022, 53(6): 217-225, 358. |
[5] | 徐若涵, 杨再强, 申梦吟, 等. 苗期低温胁迫对 “红颜” 草莓叶绿素含量及冠层高光谱的影响[J]. 中国农业气象, 2022, 43(2): 148-158. |
[6] | 冯海宽, 陶惠林, 赵钰, 等. 利用无人机高光谱估算冬小麦叶绿素含量[J]. 光谱学与光谱分析, 2022, 42(11): 3575-3580. |
[7] | 李宗飞, 苏继霞, 费聪, 等. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报, 2020, 46(4): 557-570. |
[8] | GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282. |
[9] | 吕晓, 战莘晔, 于海秋, 等. 花生冠层APAR和FAPAR高光谱遥感估测模型研究[J]. 中国油料作物学报, 2020, 42(5): 878-887. |
[10] | 童庆禧, 张兵, 郑兰芬. 高光谱遥感: 原理、技术与应用[M]. 北京: 高等教育出版社, 2006. |
[11] | 翁海勇. 基于光学成像技术的柑橘黄龙病快速检测方法研究[D]. 杭州: 浙江大学, 2019. |
[12] | 刘燕德, 张光伟, 蔡丽君. 基于高光谱的GA和SPA算法对赣南脐橙叶绿素定量分析[J]. 光谱学与光谱分析, 2012, 32(12): 3377. |
[13] | 尼格拉·吐尔逊, 苏磊·乃比, 高健, 等. GWLS-SVR模型的红枣树叶片叶绿素含量估算[J]. 光谱学与光谱分析, 2021, 41(6): 1730-1736. |
[14] | DARVISHZADEH R, SKIDMORE A, SCHLERF M, et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(4): 409-426. |
[15] | 刘涛, 张寰, 王志业, 等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报, 2021, 37(19): 65-72. |
[16] | NAUŠ J, PROKOPOVÁ J, REBÍČEK J, et al. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement[J]. Photosynthesis Research, 2010, 105(3): 265-271. |
[17] | 付波霖, 邓良超, 张丽, 等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报, 2022, 26(6): 1182-1205. |
[18] | 李胜, 张培林, 李兵, 等. 量子GA-PLS特征选择算法及其应用[J]. 量子电子学报, 2014, 31(2): 194. |
[19] | JIA W K, ZHAO D A, DING L. An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample[J]. Applied Soft Computing, 2016, 48: 373-384. |
[20] | SONG K S, LI L, LI S, et al. Hyperspectral retrieval of phycocyanin in potable water sources using genetic algorithm-partial least squares (GA-PLS) modeling[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 368-385. |
[21] | 纪文君. 基于野外vis-NIR高光谱的土壤属性预测及田间水分影响去除研究[D]. 杭州: 浙江大学, 2014. |
[22] | 彭晓伟, 张爱军, 杨晓楠, 等. 谷子叶绿素含量高光谱特征分析及其反演模型构建[J]. 干旱地区农业研究, 2022, 40(2): 69-77. |
[23] | ZHOU W, YANG H, XIE L J, et al. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model[J]. CATENA, 2021, 202: 105222. |
[24] | 郭云开, 许敏, 张晓炯, 等. 结合PRO-4SAIL和BP神经网络的叶绿素含量高光谱反演[J]. 测绘通报, 2020(3): 21-24. |
[25] | SHAO Y H, LI C N, HUANG L W, et al. Joint sample and feature selection via sparse primal and dual LSSVM[J]. Knowledge-Based Systems, 2019, 185: 104915. |
[26] | 王国辉, 张宝栋, 李向荣. 基于遗传算法的BP神经网络火炮身管烧蚀磨损量预测[J]. 火炮发射与控制学报, 2019, 40(4): 6-10, 15. |
[27] | CHANG C W, LAIRD D A, MAUSBACH M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2): 480-490. |
[28] | 罗靖, 杨再强, 杨立, 等. 基于高光谱参数建立苗期高温条件下草莓叶片叶绿素含量估算模型[J]. 中国农业气象, 2022, 43(10): 832-845. |
[29] | 方慧, 宋海燕, 曹芳, 等. 油菜叶片的光谱特征与叶绿素含量之间的关系研究[J]. 光谱学与光谱分析, 2007, 27(9): 1731-1734. |
[30] | 蔡建楠, 刘海龙, 姜波, 等. 基于GA-PLS算法的河网水体化学需氧量高光谱反演[J]. 灌溉排水学报, 2020, 39(9): 126-131. |
[31] | WANG C, FENG M C, YANG W D, et al. Extraction of sensitive bands for monitoring the winter wheat (Triticum aestivum) growth status and yields based on the spectral reflectance[J]. PLoS One, 2017, 12(1): e0167679. |
[32] | 张严, 赵忠盖, 刘飞. 黄酒总酚含量检测: 一种基于GA-LSSVM的近红外光谱波段选择方法[J]. 红外技术, 2015, 37(7): 613-617. |
[1] | LU Xiuqin, YANG Shuang, LIU Wei, WEN Xiqing. Effects of nitrogen reduction combined with liquid cow dung on the growth, yield and quality of pepper [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1051-1055. |
[2] | FANG Pingping, ZHANG Ting, WEI Jing, WANG Xueyan, LI Chaosen, LIU Huiqin, WAN Hongjian, GUO Qinwei. Genetic diversity analysis of 64 white-fruited pepper germplasm resources [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1056-1063. |
[3] | WANG Yong, XIANG Yuan, XU Wei. Effect of phosphorus on antimony accumulation andgrowth characteristics of Ficus tikoua [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(3): 592-599. |
[4] | YANG Xiaomiao, ZHANG Shicai, LI Yifei, DUAN Minjie, WANG Chunping, HUANG Qizhong, HUANG Renzhong. Research progress on the current status of machine-harvested pepper machinery and breeding in China [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(10): 2311-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||