[1] |
张情亚, 卢琦, 李凡, 等. 五种钝化剂施用水平对稻田镉污染土壤的修复效果研究[J]. 湖北农业科学, 2022, 61(16): 30-34.
|
[2] |
官迪, 吴家梅, 刘昭兵, 等. 外源硫化钠对土壤-水稻体系中镉迁移积累的影响[J]. 农业环境科学学报, 2021, 40(7): 1460-1469.
|
[3] |
LI H, LIU Y, ZHOU Y Y, et al. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice[J]. The Science of the Total Environment, 2018, 640/641: 736-745.
|
[4] |
刘静, 秦樊鑫, 罗谦, 等. 钝化剂对污染土壤汞钝化效果及辣椒吸收汞的影响[J]. 土壤通报, 2022, 53(6): 1461-1470.
|
[5] |
尹秀玲. 巯基修饰坡缕石对降低作物镉吸收的影响及机理研究[D]. 长春: 吉林大学, 2018.
|
[6] |
JIANG Y X, HU T, PENG O, et al. Impact of heavy metal passivators on the nitrogenase activity and diazotrophic community in a cadmium-contaminated paddy field[J]. International Biodeterioration & Biodegradation, 2022, 175: 105506.
|
[7] |
庾明茂. 有机硅烷钝化剂对黄铁矿的钝化及自修复性能研究[D]. 广州: 华南理工大学, 2021.
|
[8] |
ALI U. Immobilization and phytoavail ability of nickel in contaminated ultisol by organic and inorganic amendments[D]. 武汉: 华中农业大学, 2020.
|
[9] |
WU C F, ZHANG J L, ZHANG Y, et al. Risk control effectiveness of phosphorus-containing passivators on Cd-contaminated agricultural soils to be strictly controlled[J]. Journal of Soils and Sediments, 2022, 22(9): 2365-2380.
|
[10] |
HU H X, GAO L L, ZHANG H M, et al. Effectiveness of passivator amendments and optimized fertilization for ensuring the food safety of rice and wheat from cadmium-contaminated farmland[J]. Sustainability, 2022, 14(22): 15026.
|
[11] |
张剑, 孔繁艺, 卢升高. 无机钝化剂对镉污染酸性水稻土的修复效果及其机制[J]. 环境科学, 2022, 43(10): 4679-4686.
|
[12] |
黄斌. 重金属在稻田土壤中的吸附、富集、迁移特征及稳定化研究[D]. 长沙: 湖南大学, 2016.
|