Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (8): 2047-2053.DOI: 10.16178/j.issn.0528-9017.20240291
Previous Articles Next Articles
WANG Linnan1,2(), DI Shanshan2, WANG Xinquan2, QI Peipei2, WANG Zhiwei2, LIU Zhenzhen2, ZHAO Huiyu2, GU Chengbo1,*(
)
Received:
2024-04-09
Online:
2025-08-11
Published:
2025-09-04
CLC Number:
WANG Linnan, DI Shanshan, WANG Xinquan, QI Peipei, WANG Zhiwei, LIU Zhenzhen, ZHAO Huiyu, GU Chengbo. Research progress on phytoremediation of organophosphorus pesticide pollution[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2047-2053.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240291
污染物名称 | 植物名称 | 实验方式 | 参考文献 |
---|---|---|---|
三唑磷 | 美人蕉 | 水培 | [ |
菖蒲 | 水培 | [ | |
再力花 | 水培 | [ | |
香蒲 | 水培 | [ | |
衣藻 | 水培 | [ | |
裸藻 | 水培 | [ | |
敌百虫 | 美人蕉 | 水培 | [ |
凤眼莲 | 水培 | [ | |
毒死蜱 | 菖蒲 | 土培 | [ |
转基因拟南芥 | 水培 | [ | |
玉米+白腐真菌 | 水培 | [ | |
黑麦草+白腐真菌 | 土培 | [ | |
氧化乐果 | 拟南芥 | 水培+灌根 | [ |
乐果 | 香蒲 | 水培 | [ |
水葱 | 水培 | [ | |
河水中∑OPs | 石菖蒲 | 水培 | [ |
二嗪磷 | 海草 | 水培 | [ |
杀螟硫磷 | 细叶满江红 | 水培 | [ |
细叶满江红 | 水培 | [ | |
甲胺磷 | 拟南芥 | 水培+灌根 | [ |
甲基对硫磷 | 拟南芥 | 水培+灌根 | [ |
凤眼莲 | 水培 | [ | |
宽叶香蒲 | 水培 | [ | |
马拉硫磷 | 凤眼莲 | 水培 | [ |
羽毛草 | 水培 | [ | |
乙硫磷 | 凤眼莲 | 水培 | [ |
甲基内吸磷 | 浮萍 | 水培 | [ |
育畜磷 | 伊乐藻 | 水培 | [ |
Table 1 Some plants that can degrade organophosphorus
污染物名称 | 植物名称 | 实验方式 | 参考文献 |
---|---|---|---|
三唑磷 | 美人蕉 | 水培 | [ |
菖蒲 | 水培 | [ | |
再力花 | 水培 | [ | |
香蒲 | 水培 | [ | |
衣藻 | 水培 | [ | |
裸藻 | 水培 | [ | |
敌百虫 | 美人蕉 | 水培 | [ |
凤眼莲 | 水培 | [ | |
毒死蜱 | 菖蒲 | 土培 | [ |
转基因拟南芥 | 水培 | [ | |
玉米+白腐真菌 | 水培 | [ | |
黑麦草+白腐真菌 | 土培 | [ | |
氧化乐果 | 拟南芥 | 水培+灌根 | [ |
乐果 | 香蒲 | 水培 | [ |
水葱 | 水培 | [ | |
河水中∑OPs | 石菖蒲 | 水培 | [ |
二嗪磷 | 海草 | 水培 | [ |
杀螟硫磷 | 细叶满江红 | 水培 | [ |
细叶满江红 | 水培 | [ | |
甲胺磷 | 拟南芥 | 水培+灌根 | [ |
甲基对硫磷 | 拟南芥 | 水培+灌根 | [ |
凤眼莲 | 水培 | [ | |
宽叶香蒲 | 水培 | [ | |
马拉硫磷 | 凤眼莲 | 水培 | [ |
羽毛草 | 水培 | [ | |
乙硫磷 | 凤眼莲 | 水培 | [ |
甲基内吸磷 | 浮萍 | 水培 | [ |
育畜磷 | 伊乐藻 | 水培 | [ |
[1] | MALI H, SHAH C, PATEL D H, et al. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision[J]. Journal of Inorganic Biochemistry, 2022, 231: 111771. |
[2] | SINGH B K, WALKER A. Microbial degradation of organophosphorus compoundsFree[J]. FEMS Microbiology Reviews, 2006, 30(3): 428-471. |
[3] | PAN L L, SUN J T, LI Z H, et al. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment[J]. Environmental Science and Pollution Research, 2018, 25(1): 4-11. |
[4] | LARI S Z, KHAN N A, GANDHI K N, et al. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1): 11. |
[5] | 翟紫剑, 苏航, 孟令玺. 农业面源污染的危害与治理[J]. 生态经济, 2021, 37(6): 9-12. |
[6] | NAUGHTON S X, TERRY A V. Neurotoxicity in acute and repeated organophosphate exposure[J]. Toxicology, 2018, 408: 101-112. |
[7] | FARNOOSH G, LAjpgI A M. A review on engineering of organophosphorus hydrolase (OPH) enzyme[J]. Journal of Applied Biotechnology Reports, 2014-04-07. |
[8] | GOMES M P, LE MANAC’H S G, HÉNAULT-ETHIER L, et al. Glyphosate-dependent inhibition of photosynthesis in willow[J]. Frontiers in Plant Science, 2017, 8: 207. |
[9] | YAN A, WANG Y M, TAN S N, et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land[J]. Frontiers in Plant Science, 2020, 11: 359. |
[10] | RISSATO S R, GALHIANE M S, FERNANDES J R, et al. Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides[J]. BioMed Research International, 2015, 2015: 549863. |
[11] | OLISAH C, HUMAN L R D, RUBIDGE G, et al. Organophosphate pesticides sequestered in tissues of a seagrass species-Zostera capensis from a polluted watershed[J]. Journal of Environmental Management, 2021, 300: 113657. |
[12] | 黄亚. 植物修复富营养化及有机农药污染水体技术研究[D]. 上海: 同济大学, 2006. |
[13] | ASRAFUL ISLAM S M, YEASMIN S, ISLAM M S. Organophosphorus pesticide tolerance of transgenic Arabidopsis thaliana by bacterial ophB gene encode organophosphorus hydrolase[J]. Journal of Environmental Science and Health, Part B, 2021, 56(12): 1051-1056. |
[14] | 肖瑾. 美人蕉和菖蒲对水体中三唑磷去除作用的初步研究[D]. 武汉: 华中农业大学, 2006. |
[15] | 肖惠萍. 湿地植物修复三唑磷农药污染水体的研究[D]. 武汉: 中国科学院水生生物研究所, 2009. |
[16] | 杨英利. 藻类对苯胺和三唑磷的积累、降解和抗氧化酶反应[D]. 武汉: 华中师范大学, 2006. |
[17] | 刘浩, 赵旭德, 刘梦琳, 等. 水体敌百虫污染的植物修复及其生理生化特性研究[J]. 湖北理工学院学报, 2015, 31(3): 31-36. |
[18] | WANG X, HOU J W, LIU W R, et al. Plant-microbial remediation of chlorpyrifos contaminated soil[J]. Journal of Environmental Science and Health, Part B, 2021, 56(10): 925-931. |
[19] | 高仙灵. 拟南芥有机磷诱导系统的建立及其对有机磷胁迫的响应[D]. 呼和浩特: 内蒙古农业大学, 2007. |
[20] | SAEB K. Phytoremediation of organophosphorus pesticides from aqueous media using Azolla filiculoides (case study: anzali wetland)[J]. Biomedical Journal of Scienjpgic & Technical Research, 2022, 45(5). |
[21] | 夏会龙, 吴良欢, 陶勤南. 凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J]. 环境科学学报, 2002(3): 329-332. |
[22] | AMAYA-CHÁVEZ A, MARTÍNEZ-TABCHE L, LÓPEZ-LÓPEZ E, et al. Methyl parathion toxicity to and removal efficiency by Typha lajpgolia in water and arjpgicial sediments[J]. Chemosphere, 2006, 63(7): 1124-1129. |
[23] | 夏会龙, 吴良欢, 陶勤南. 凤眼莲加速水溶液中马拉硫磷降解[J]. 中国环境科学, 2001(6): 74-76. |
[24] | GAO J, GARRISON A W, HOEHAMER C, et al. Uptake and phytotransformation of organophosphorus pesticides by axenically cultivated aquatic plants[J]. Journal of Agricultural and Food Chemistry, 2000, 48(12): 6114-6120. |
[25] | 夏会龙, 吴良欢, 陶勤南. 凤眼莲植物修复几种农药的效应[J]. 浙江大学学报(农业与生命科学版), 2002 (2): 49-52. |
[26] | COLLINS C, FRYER M, GROSSO A. Plant uptake of non ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1):45-52. |
[27] | FISMES J, PERRIN-GANIER C, EMPEREUR-BISSONNET P, et al. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils[J]. Journal of Environmental Quality, 2002, 31(5): 1649-1656. |
[28] | CAI J, GU C G, TI Q Q, et al. Mechanistic studies of congener-specific adsorption and bioaccumulation of polycyclic aromatic hydrocarbons and phthalates in soil by novel QSARs[J]. Environmental Research, 2019, 179: 108838. |
[29] | FARZANA S, CHEN J, PAN Y, et al. Antioxidative response of Kandelia obovata, a true mangrove species, to polybrominated diphenyl ethers (BDE-99 and BDE-209) during germination and early growth[J]. Marine Pollution Bulletin, 2017, 124(2): 1063-1070. |
[30] | ÅSLUND M W, ZEEB B A. A review of recent research developments into the potential for phytoextraction of persistent organic pollutants (pops) from weathered, contaminated soil[C]// Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination. Dordrecht: Springer Netherlands, 2010: 35-59. |
[31] | CARMAN E P, CROSSMAN T L, GATLIFF E G. Phytoremediation of No. 2 fuel oil-contaminated soil[J]. Journal of Soil Contamination, 1998, 7(4): 455-466. |
[32] | PASCHKE A, NEITZEL P L, WALTHER W, et al. Octanol/water partition coefficient of selected herbicides: determination using shake-flask method and reversed-phase high-performance liquid chromatography[J]. Journal of Chemical & Engineering Data, 2004, 49(6): 1639-1642. |
[33] | NURZHANOVA A, KALUGIN S, ZHAMBAKIN K. Obsolete pesticides and application of colonizing plant species for remediation of contaminated soil in Kazakhstan[J]. Environmental Science and Pollution Research, 2013, 20(4): 2054-2063. |
[34] | NURZHANOVA A, ZHAMBAKIN K, RAKHIMBAYEV I, et al. Obsolete pesticides and phytoremediation of polluted soil in Kazakhstan[J]. Journal of Life Sciences, 2011, 5(7):12. |
[35] | SEDLOVSKIY Z A. The problem of obsolete pesticides pollution for the Kazakhstan environment and soil remediation by wild plants[J]. The Asian and Australasian Journal of Plant Science and Biotechnology, 2010, 4(Speca1). |
[36] | PIDLISNYUK V, TRÖGL J, STEFANOVSKA T, et al. Preliminary results on growing second generation biofuel crop Miscanthus×giganteus at the polluted military site in Ukraine[J]. Nova Biotechnologica et Chimica, 2016, 15(1): 77-84. |
[37] | MOKLYACHUK L, DREBOT O, MOKLYACHUK O, et al. Ecological risks from contamination of Ukrainian soils by persistent organic pollutants[J]. Environment and Ecology Research, 2014, 2(1): 27-34. |
[38] | OLISAH C, RUBIDGE G, HUMAN L R D, et al. A translocation analysis of organophosphate pesticides between surface water, sediments and tissues of common reed Phragmites australis[J]. Chemosphere, 2021, 284: 131380. |
[39] | SANDERMANN H JR. Higher plant metabolism of xenobiotics: the ‘green liver’ concept[J]. Pharmacogenetics, 4(5): 225-241. |
[40] | WILKEN A, BOCK C, BOKERN M, et al. Metabolism of different PCB congeners in plant cell cultures[J]. Environmental Toxicology and Chemistry, 1995, 14(12): 2017-2022. |
[41] | JIANG L J, GENG Y, WANG L, et al. Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry[J]. Journal of Separation Science, 2022, 45(10): 1806-1817. |
[42] | WANG L J, SUN Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: a review[J]. Biochemical Engineering Journal, 2021, 168: 107945. |
[43] | MALI H, SHAH C, RUDAKIYA D M, et al. A novel organophosphate hydrolase from Arthrobacter sp. HM01: characterization and applications[J]. Bioresource Technology, 2022, 349: 126870. |
[44] | MCGUINNESS M, DOWLING D. Plant-associated bacterial degradation of toxic organic compounds in soil[J]. International Journal of Environmental Research and Public Health, 2009, 6(8): 2226-2247. |
[45] | EEVERS N, WHITE J C, VANGRONSVELD J, et al. Bio- and phytoremediation of pesticide-contaminated environments[M]// Phytoremediation. Amsterdam: Elsevier, 2017: 277-318. |
[46] | 高仙灵, 卢慧星, 李国婧, 等. 有机磷生物修复研究进展[J]. 中国生物工程杂志, 2007, 27(3): 127-131. |
[47] | 万大娟, 贾晓珊, 陈娴. 多氯代有机污染物胁迫下植物某些根系分泌物的变化[J]. 中山大学学报(自然科学版), 2007, 46(1): 110-113, 11. |
[48] | PANT H K, VAUGHAN D, EDWARDS A C. Molecular size distribution and enzymatic degradation of organic phosphorus in root exudates of spring barley[J]. Biology and Fertility of Soils, 1994, 18(4): 285-290. |
[49] | 信欣, 蔡鹤生. 农药污染土壤的植物修复研究[J]. 植物保护, 2004, 30(1): 8-11. |
[50] | KHASHI U RAHMAN M, WANG X X, GAO D M, et al. Root exudates increase phosphorus availability in the tomato/potato onion intercrop ping system[J]. Plant and Soil, 2021, 464(1): 45-62. |
[51] | 魏树和, 周启星, 张凯松, 等. 根际圈在污染土壤修复中的作用与机理分析[J]. 应用生态学报, 2003, 14(1): 143-147. |
[52] | JAISWAL D K, VERMA J P, KRISHNA R, et al. Molecular characterization of monocrotophos and chlorpyrifos tolerant bacterial strain for enhancing seed germination of vegetable crops[J]. Chemosphere, 2019, 223: 636-650. |
[53] | QIU J L, CHEN G S, ZHOU H, et al. In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and Aloe (Barbadensis)[J]. Science of the Total Environment, 2016, 550: 1134-1140. |
[54] | THAKUR T, BARYA M, DUTTA J, et al. Integrated phytobial remediation of dissolved pollutants from domestic wastewater through constructed wetlands: an interactive macrophyte-microbe-based green and low-cost decontamination technology with prospective resource recovery[J]. Water, 2023, 15(22): 3877. |
[55] | YU X F, ZHU H, YAN B X, et al. Removal of chlorpyrifos and its hydrolytic metabolite 3, 5, 6-trichloro-2-pyridinol in constructed wetland mesocosms under soda saline-alkaline conditions: Effectiveness and influencing factors[J]. Journal of Hazardous Materials, 2019, 373: 67-74. |
[56] | GAONKAR O D, NAMBI I M, GOVINDARAJAN S K. Soil organic amendments: impacts on sorption of organophosphate pesticides on an alluvial soil[J]. Journal of Soils and Sediments, 2019, 19(2): 566-578. |
[57] | NADDAFIUN F, ZOHOORI S, YAMIN F, et al. Doping cork fibers with nanomaterials for the removal of organo-phosphorous pesticide[J]. The Journal of the Textile Institute, 2023: 1-8. |
[58] | ZHAO D, QIU S K, LI M M, et al. Modified biochar improves the storage capacity and adsorption affinity of organic phosphorus in soil[J]. Environmental Research, 2022, 205: 112455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||