浙江农业科学 ›› 2022, Vol. 63 ›› Issue (1): 114-120.DOI: 10.16178/j.issn.0528-9017.20212251
徐如梦1,2(), 李冬月2, 刘秀丽2, 严成其3, 陈剑平1,2, 王栩鸣2,*(
)
收稿日期:
2021-06-09
出版日期:
2022-01-11
发布日期:
2021-12-29
通讯作者:
王栩鸣
作者简介:
王栩鸣(1981—),男,浙江杭州人,博士,主要从事植物病理学研究工作,E-mail: xmwang@zaas.ac.cn。基金资助:
Received:
2021-06-09
Online:
2022-01-11
Published:
2021-12-29
摘要:
近年来,由于气候、耕作条件等因素的变化导致水稻白叶枯病害有逐年加重的趋势,对我国的粮食安全构成了很大的威胁。发掘新种质、创制抗病新材料、培育抗性新品种,被认为是提高粮食产量和保证粮食安全生产的最经济有效的方法。因此,抗性基因资源的挖掘与利用受到了广泛的重视,在抗病基因的鉴定、克隆及其抗病分子机理等方面取得了一系列重大进展。Xoo主要是通过分泌具有专化性的效应因子来逃避和抑制植物免疫反应,而植物则是通过触发PTI和ETI反应来阻止或抑制病原菌的侵染。本文综述了Xoo侵染水稻的过程,以及在侵染过程中水稻抵御Xoo的免疫反应,着重分析了ETI反应中的一些抗性基因的抗病机理,以期为水稻抗病资源高效利用以及病害的防控提供新的思路。
中图分类号:
徐如梦, 李冬月, 刘秀丽, 严成其, 陈剑平, 王栩鸣. 水稻白叶枯病发病过程及抗病育种新思路[J]. 浙江农业科学, 2022, 63(1): 114-120.
[1] | OU S H. Rice diseases[M]. Kew, Surrey: Commonwealth Mycological Institute, 1985: 380. |
[2] |
SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243):1804-1806.
DOI URL |
[3] | YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668. |
[4] |
JI C H, JI Z Y, LIU B, et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors[J]. Plant Communications, 2020, 1(4):100087.
DOI URL |
[5] |
XIANG Y, CAO Y L, XU C G, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26[J]. Theoretical and Applied Genetics, 2006, 113(7):1347-1355.
DOI URL |
[6] |
HU K M, CAO J B, ZHANG J, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement[J]. Nature Plants, 2017, 3:17009.
DOI URL |
[7] |
IYER A S, MCCOUCH S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Molecular Plant-Microbe Interactions, 2004, 17(12):1348-1354.
DOI URL |
[8] |
CHEN X F, LIU P C, MEI L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Communications, 2021, 2(3):100143.
DOI URL |
[9] |
TIAN D S, WANG J X, ZENG X, et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic Reticulum[J]. The Plant Cell, 2014, 26(1):497-515.
DOI URL |
[10] | YANG B, SUGIO A, WHITE F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10503-10508. |
[11] |
WANG C L, ZHANG X P, FAN Y L, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015, 8(2):290-302.
DOI URL |
[12] | LIU Q S, YUAN M, ZHOU Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant, Cell & Environment, 2011, 34(11):1958-1969. |
[13] |
GU K Y, YANG B, TIAN D S, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice[J]. Nature, 2005, 435(7045):1122-1125.
DOI URL |
[14] |
HUTIN M, SABOT F, GHESQUIÈRE A, et al. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice[J]. The Plant Journal, 2015, 84(4):694-703.
DOI URL |
[15] |
MEW T W. Focus on bacterial blight of rice[J]. Plant Disease, 1993, 77(1):5.
DOI URL |
[16] |
NIÑO-LIU D O, RONALD P C, BOGDANOVE A J. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5):303-324.
DOI URL |
[17] | SUMNER D R. Epidemiology and control of bacterial leaf blight of corn[J]. Phytopathology, 1977, 77(9):1113. |
[18] |
SWINGS J, VAN DEN MOOTER M, VAUTERIN L, et al. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev[J]. International Journal of Systematic Bacteriology, 1990, 40(3):309-311.
DOI URL |
[19] |
CURTIS L C. Deleterious effects of guttated fluids on foliage[J]. American Journal of Botany, 1943, 30(10):778-782.
DOI URL |
[20] |
TAKAHITO N, HISATOSHI K. Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice[J]. Japanese Journal of Phytopathology, 1999, 65(1):9-14.
DOI URL |
[21] |
ANTOLÍN-LLOVERA M, RIED M K, BINDER A, et al. Receptor kinase signaling pathways in plant-microbe interactions[J]. Annual Review of Phytopathology, 2012, 50:451-473.
DOI URL |
[22] |
MENGISTE T. Plant immunity to necrotrophs[J]. Annual Review of Phytopathology, 2012, 50(1):267-294.
DOI URL |
[23] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
DOI URL |
[24] |
NÜRNBERGER T, BRUNNER F, KEMMERLING B, et al. Innate immunity in plants and animals: striking similarities and obvious differences[J]. Immunological Reviews, 2004, 198(1):249-266.
DOI URL |
[25] |
ZIPFEL C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology, 2008, 20(1):10-16.
DOI URL |
[26] |
FRITZ-LAYLIN L K, KRISHNAMURTHY N, TO¨R M, et al. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis[J]. Plant Physiology, 2005, 138(2):611-623.
DOI URL |
[27] |
SHIU S H, KARLOWSKI W M, PAN R S, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. The Plant Cell, 2004, 16(5):1220-1234.
DOI URL |
[28] |
GÓMEZ-GÓMEZ L, BOLLER T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6):1003-1011.
DOI URL |
[29] |
ZIPFEL C, KUNZE G, CHINCHILLA D, et al. Perception of the bacterial PAMP EF-tu by the receptor EFR restricts Agrobacterium-mediated transformation[J]. Cell, 2006, 125(4):749-760.
DOI URL |
[30] |
MEDZHITOV R, JANEWAY C A. Innate immunity: impact on the adaptive immune response[J]. Current Opinion in Immunology, 1997, 9(1):4-9.
DOI URL |
[31] |
SILIPO A, ERBS G, SHINYA T, et al. Glyco-conjugates as elicitors or suppressors of plant innate immunity[J]. Glycobiology, 2010, 20(4):406-419.
DOI URL |
[32] |
TAKAI R, ISOGAI A, TAKAYAMA S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular Plant-Microbe Interactions, 2008, 21(12):1635-1642.
DOI URL |
[33] |
LIU B, LI J F, AO Y, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J]. The Plant Cell, 2012, 24(8):3406-3419.
DOI URL |
[34] |
SILIPO A, MOLINARO A, STURIALE L, et al. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris[J]. Journal of Biological Chemistry, 2005, 280(39):33660-33668.
DOI URL |
[35] |
RONALD P C, BEUTLER B. Plant and animal sensors of conserved microbial signatures[J]. Science, 2010, 330(6007):1061-1064.
DOI URL |
[36] |
ERBS G, NEWMAN M A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity[J]. Molecular Plant Pathology, 2012, 13(1):95-104.
DOI URL |
[37] |
DZIARSKI R, GUPTA D. Peptidoglycan recognition in innate immunity[J]. Journal of Endotoxin Research, 2005, 11(5):304-310.
DOI URL |
[38] |
MCDONALD C, INOHARA N, NUÑEZ G. Peptidoglycan signaling in innate immunity and inflammatory disease[J]. The Journal of Biological Chemistry, 2005, 280(21):20177-20180.
DOI URL |
[39] |
ERBS G, SILIPO A, ASLAM S, et al. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity[J]. Chemistry & Biology, 2008, 15(5):438-448.
DOI URL |
[40] |
XU J, ZHANG S Q. Mitogen-activated protein kinase cascades in signaling plant growth and development[J]. Trends in Plant Science, 2015, 20(1):56-64.
DOI URL |
[41] |
WIDMANN C, GIBSON S, JARPE M B, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human[J]. Physiological Reviews, 1999, 79(1):143-180.
DOI URL |
[42] |
PEDLEY K F, MARTIN G B. Role of mitogen-activated protein kinases in plant immunity[J]. Current Opinion in Plant Biology, 2005, 8(5):541-547.
DOI URL |
[43] |
TENA G, ASAI T, CHIU W L, et al. Plant mitogen-activated protein kinase signaling cascades[J]. Current Opinion in Plant Biology, 2001, 4(5):392-400.
DOI URL |
[44] | RASMUSSEN M W, ROUX M, PETERSEN M, et al. MAP kinase cascades in Arabidopsis innate immunity[J]. Frontiers in Plant Science, 2012, 3:169. |
[45] |
MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51:245-266.
DOI URL |
[46] |
ZHANG M M, SU J B, ZHANG Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense[J]. Current Opinion in Plant Biology, 2018, 45:1-10.
DOI URL |
[47] |
MONTILLET J L, LEONHARDT N, MONDY S, et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis[J]. PLoS Biology, 2013, 11(3):e1001513.
DOI URL |
[48] |
MELOTTO M, UNDERWOOD W, KOCZAN J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5):969-980.
DOI URL |
[49] |
MA H G, LI J, MA L, et al. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance[J]. Molecular Plant, 2021, 14(4):620-632.
DOI URL |
[50] |
ANTONY G, ZHOU J H, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. The Plant Cell, 2010, 22(11):3864-3876.
DOI URL |
[51] |
ZHANG B M, ZHANG H T, LI F, et al. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Communications, 2020, 1(4):100088.
DOI URL |
[52] |
ZHANG J, COAKER G, ZHOU J M, et al. Plant immune mechanisms: from reductionistic to holistic points of view[J]. Molecular Plant, 2020, 13(10):1358-1378.
DOI URL |
[53] | CHEN X W, CHERN M, CANLAS P E, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17):8029-8034. |
[54] |
JIANG Y N, CHEN X H, DING X D, et al. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance[J]. The Plant Journal, 2013, 73(5):814-823.
DOI URL |
[55] |
PARK C J, PENG Y, CHEN X W, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. PLoS Biology, 2008, 6(9):e231.
DOI URL |
[56] |
PENG Y, BARTLEY L E, CHEN X W, et al. OsWRKY62 is a Negative Regulator of Basal and Xa21-Mediated Defense against Xanthomonas oryzae pv. oryzae in Rice[J]. Molecular Plant, 2008, 1(3):446-458.
DOI URL |
[57] |
WANG Y S, PI L Y, CHEN X H, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. The Plant Cell, 2006, 18(12):3635-3646.
DOI URL |
[58] |
PARK C J, WEI T, SHARMA R, et al. Overexpression of rice auxilin-like protein, XB21, induces necrotic lesions, up-regulates endocytosis-related genes, and confers enhanced resistance to Xanthomonas oryzae pv. oryzae[J]. Rice, 2017, 10(1):1-12.
DOI URL |
[59] |
PARK C J, RONALD P C. Cleavage and nuclear localization of the rice XA21 immune receptor[J]. Nature Communications, 2012, 3:920.
DOI URL |
[60] |
CHEN X W, ZUO S M, SCHWESSINGER B, et al. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors[J]. Molecular Plant, 2014, 7(5):874-892.
DOI URL |
[61] | CADDELL D F, PARK C J, THOMAS N C, et al. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity[J]. Rice (N Y), 2017, 10(1):23. |
[62] |
CAO Y L, DING X H, CAI M, et al. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function[J]. Genetics, 2007, 177(1):523-533.
DOI URL |
[63] |
TORUÑO T Y, STERGIOPOULOS I, COAKER G. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners[J]. Annual Review of Phytopathology, 2016, 54:419-441.
DOI URL |
[64] |
CHIANG Y H, COAKER G. Effector triggered immunity: NLR immune perception and downstream defense responses[J]. The Arabidopsis Book, 2015, 13:e0183. DOI: 10.1199/tab.0183.
DOI URL |
[65] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology, 2016, 16(9):537-552.
DOI URL |
[66] |
CAO J B, ZHANG M, XIAO J H, et al. Dominant and recessive major R genes lead to different types of host cell death during resistance to Xanthomonas oryzae in rice[J]. Frontiers in Plant Science, 2018, 9:1711.
DOI URL |
[67] |
YANG B, WHITE F F. Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice[J]. Molecular Plant-Microbe Interactions, 2004, 17(11):1192-1200.
DOI URL |
[68] |
BOGDANOVE A J, SCHORNACK S, LAHAYE T. TAL effectors: finding plant genes for disease and defense[J]. Current Opinion in Plant Biology, 2010, 13(4):394-401.
DOI URL |
[69] |
SCHORNACK S, MOSCOU M J, WARD E R, et al. Engineering plant disease resistance based on TAL effectors[J]. Annual Review of Phytopathology, 2013, 51:383-406.
DOI URL |
[70] |
GU K Y, SANGHA J S, LI Y, et al. High-resolution genetic mapping of bacterial blight resistance gene Xa10[J]. Theoretical and Applied Genetics, 2008, 116(2):155-163.
DOI URL |
[71] |
WANG C L, QIN T F, YU H M, et al. The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2014, 15(4):333-341.
DOI URL |
[72] |
WU L F, GOH M L, SREEKALA C, et al. XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv oryzae[J]. Plant Physiology, 2008, 148(3):1497-1509.
DOI URL |
[73] |
CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323):527-532.
DOI URL |
[74] |
MAK A N S, BRADLEY P, BOGDANOVE A J, et al. TAL effectors: function, structure, engineering and applications[J]. Current Opinion in Structural Biology, 2013, 23(1):93-99.
DOI URL |
[75] |
ORPHANIDES G, LAGRANGE T, REINBERG D. The general transcription factors of RNA polymerase Ⅱ[J]. Genes & Development, 1996, 10(21):2657-2683.
DOI URL |
[76] |
HØIBY T, ZHOU H Q, MITSIOU D J, et al. A facelift for the general transcription factor TFIIA[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2007, 1769(7/8):429-436.
DOI URL |
[77] |
JIANG G H, XIA Z H, ZHOU Y L, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1[J]. Molecular Genetics and Genomics, 2006, 275(4):354-366.
DOI URL |
[78] |
SCHORNACK S, MEYER A, RÖMER P, et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins[J]. Journal of Plant Physiology, 2006, 163(3):256-272.
DOI URL |
[79] |
YUAN M, KE Y G, HUANG R Y, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria[J]. eLife, 2016, 5:e19605.
DOI URL |
[80] |
GU K Y, TIAN D S, QIU C X, et al. Transcription activator-like type Ⅲ effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2009, 10(6):829-835.
DOI URL |
[81] |
HUANG S, ANTONY G, LI T, et al. The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight[J]. The Plant Journal, 2016, 86(2):186-194.
DOI URL |
[82] |
ZHOU J H, PENG Z, LONG J Y, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal, 2015, 82(4):632-643.
DOI URL |
[83] |
CHU Z H, YUAN M, YAO J L, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. Genes & Development, 2006, 20(10):1250-1255.
DOI URL |
[84] |
ZHANG S B, CHEN C, LI L, et al. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family[J]. Plant Physiology, 2005, 139(3):1107-1124.
DOI URL |
[85] |
DIENER A C, AUSUBEL F M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific[J]. Genetics, 2005, 171(1):305-321.
DOI URL |
[86] |
LI H, ZHOU S Y, ZHAO W S, et al. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance[J]. Plant Molecular Biology, 2009, 69(3):337-346.
DOI URL |
[87] |
JIANG N, YAN J, LIANG Y, et al. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.):an updated review[J]. Rice, 2020, 13(1):1-12.
DOI URL |
[1] | 顾雪迎1, 王洪凯2, 郭庆元1*. 苹果、梨轮纹病研究进展 [J]. 浙江农业科学, 2015, 1(8): 1242-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||