[1] |
刘琰, 孙德智. 高级氧化技术处理染料废水的研究进展[J]. 工业水处理, 2006, 26(6): 1-5.
|
[2] |
邵琴, 金腊华, 刘玉兵, 等. 沸石载体催化剂研制及其催化臭氧氧化染料废水的研究[J]. 环境污染与防治, 2010, 32(12): 59-62, 66.
|
[3] |
高群丽, 张耀宗, 孙锦程, 等. 臭氧氧化技术深度处理市政污水实验研究[J]. 华北理工大学学报(自然科学版), 2022, 44(3): 103-110.
|
[4] |
周姝岑, 芦婉蒙, 李攀. 微纳米气泡臭氧氧化处理印染废水产生的RO浓水[J]. 中国给水排水, 2022, 38(9): 88-93.
|
[5] |
LEGUBE B. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catalysis Today, 1999, 53(1): 61-72.
|
[6] |
RODRÍGUEZ-REINOSO F. The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998, 36(3): 159-175.
|
[7] |
KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669.
|
[8] |
SÁNCHEZ-POLO M, GUNTEN U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters[J]. Water Research, 2005, 39(14): 3189-3198.
|
[9] |
BELTRÁN F J, RIVAS J, ÁLVAREZ P, et al. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon[J]. Ozone: Science & Engineering, 2002, 24(4): 227-237.
|
[10] |
BRASQUET C, CLOIREC P L. Adsorption onto activated carbon fibers: application to water and air treatments[J]. Carbon, 1997, 35(9): 1307-1313.
|
[11] |
BELTRÁN F J, ACEDO B, RIVAS F J, et al. Pyruvic acid removal from water by the simultaneous action of ozone and activated carbon[J]. Ozone: Science & Engineering, 2005, 27(2): 159-169.
|
[12] |
FARIA P C C, ÓRFÃO J J M, PEREIRA M F R. Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2715-2721.
|
[13] |
SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39(11): 1635-1642.
|
[14] |
ZHAN J H, LI Z X, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes[J]. Separation and Purification Technology, 2019, 208: 12-18.
|
[15] |
MASENDE Z P G, KUSTER B F M, PTASINSKI K J, et al. Kinetics of malonic acid degradation in aqueous phase over Pt/graphite catalyst[J]. Applied Catalysis B: Environmental, 2005, 56(3): 189-199.
|
[16] |
MANGUN C L, BENAK K R, ECONOMY J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39(12): 1809-1820.
|
[17] |
KAN K, XIA T, LI L, et al. Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide[J]. Nanotechnology, 2009, 20(18): 185502.
|
[18] |
RAKNESS K, GORDON G, LANGLAIS B, et al. Guideline for measurement of ozone concentration in the process gas from an ozone generator[J]. Ozone: Science & Engineering, 1996, 18(3): 209-229.
|
[19] |
BOEHM H P. Chemical identification of surface groups[J]. Advances in Catalysis, 1966, 16: 179-274.
|
[20] |
NOH J S, SCHWARZ J A. Effect of HNO3 treatment on the surface acidity of activated carbons[J]. Carbon, 1990, 28(5): 675-682.
|
[21] |
STRELKO V V, KUTS V S, THROWER P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000, 38(10): 1499-1503.
|
[22] |
ÁLVAREZ P M, GARCÍA-ARAYA J F, BELTRÁN F J, et al. Ozonation of activated carbons: effect on the adsorption of selected phenolic compounds from aqueous solutions[J]. Journal of Colloid and Interface Science, 2005, 283(2): 503-512.
|
[23] |
CHEN J P, WU S N. Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties[J]. Langmuir, 2004, 20(6): 2233-2242.
|
[24] |
PRZEPIÓRSKI J, SKRODZEWICZ M, MORAWSKI A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1/2/3/4): 235-242.
|
[25] |
RIVERA-UTRILLA J, SÁNCHEZ-POLO M. Ozonation of 1, 3, 6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase[J]. Applied Catalysis B: Environmental, 2002, 39(4): 319-329.
|
[26] |
FARIA P C C, ÓRFAÕ J J M, PEREIRA M F R. Activated carbon catalytic ozonation of oxamic and oxalic acids[J]. Applied Catalysis B: Environmental, 2008, 79(3): 237-243.
|
[27] |
JANS U, HOIGNÉ J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals[J]. Ozone: Science & Engineering, 1998, 20(1): 67-90.
|
[28] |
RADOVIC L, MORENO-CASTILLA C, RIVERA-UTRILLA J. Carbon materials as adsorbents in aqueous solutions[J]. Chemistry and Physics of Carbon, 2000, 27:227-405.
|
[29] |
LIU Z Q, MA J, CUI Y H, et al. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube[J]. Applied Catalysis B: Environmental, 2009, 92(3/4): 301-306.
|