[1] |
ELLING A A. Major emerging problems with minor Meloidogyne species[J]. Phytopathology, 2013, 103(11): 1092-1102.
|
[2] |
SINGH S, SINGH B, SINGH A P. Nematodes: a threat to sustainability of agriculture[J]. Procedia Environmental Sciences, 2015, 29: 215-216.
|
[3] |
JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology, 2013, 14(9): 946-961.
|
[4] |
聂恒林, 董正斌, 安富强, 等. 松材线虫病为害情况及防治措施[J]. 现代园艺, 2022, 45(20): 56-58.
|
[5] |
王新生. 林木根结线虫的发生与防治[J]. 中国林业, 2007(11): 44.
|
[6] |
金娜, 王学艳, 刘倩, 等. 土壤生物熏蒸对蔬菜根结线虫及土壤线虫群落的影响[J]. 生物技术通报, 2021, 37(7): 156-163.
|
[7] |
许嘉麟, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株对松材线虫产卵和繁殖的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 209-214.
|
[8] |
OH M, HAN J W, LEE C H, et al. Nematicidal and plant growth-promoting activity of Enterobacter asburiae HK169: genome analysis provides insight into its biological activities[J]. Journal of Microbiology and Biotechnology, 2018, 28(6): 968-975.
|
[9] |
KANG M K, KIM J H, LIU M J, et al. New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020[J]. Scientific Reports, 2022, 12: 3947.
|
[10] |
MARQUES-PEREIRA C, PROENÇA D N, MORAIS P V. The role of serratomolide-like amino lipids produced by bacteria of genus Serratia in nematicidal activity[J]. Pathogens, 2022, 11(2): 198.
|
[11] |
BORRAJO M P, MONDINO E A, MARONICHE G A, et al. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica[J]. Revista Argentina De Microbiologia, 2022, 54(3): 224-232.
|
[12] |
PIRES D, VICENTE C S L, MENÉNDEZ E, et al. The fight against plant-parasitic nematodes: current status of bacterial and fungal biocontrol agents[J]. Pathogens, 2022, 11(10): 1178.
|
[13] |
HU H J, GAO Y, LI X, et al. Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2[J]. Phytopathology, 2020, 110(2): 336-344.
|
[14] |
刘苏瑶. 重氮营养植物杆菌对杀线虫芽孢杆菌B16定殖障碍的研究[D]. 南阳: 南阳师范学院, 2022.
|
[15] |
WERNEBURG G T, THANASSI D G. Pili assembled by the chaperone/usher pathway in Escherichia coli and Salmonella[J]. EcoSal Plus, 2018, 8(1): DOI: 10.1128/ecosalplus.ESP-0007-2017.
|
[16] |
LIST C, GRUTSCH A, RADLER C, et al. Genes activated by Vibrio cholerae upon exposure to Caenorhabditis elegans reveal the mannose-sensitive hemagglutinin to be essential for colonization[J]. mSphere, 2018, 3(3): e00238-e00218.
|
[17] |
KILMURY S L N, BURROWS L L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities[J]. mBio, 2018, 9(4): e01310-e01318.
|
[18] |
GUPTA S, KUMAR P, RATHI B, et al. Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nano complex reduced virulence of UPEC[J]. Scientific Reports, 2021, 11: 17801.
|
[19] |
RYU J H, BEUCHAT L R. Biofilm formation by Escherichia coli O157: H7 on stainless steel: effect of exopolysaccharide and Curli production on its resistance to chlorine[J]. Applied and Environmental Microbiology, 2005, 71(1): 247-254.
|
[20] |
MARKLUND B I, TENNENT J M, GARCIA E, et al. Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue-specific adhesive properties[J]. Molecular Microbiology, 1992, 6(16): 2225-2242.
|
[21] |
ABRAHAM S N, SUN D X, DALE J B, et al. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae[J]. Nature, 1988, 336: 682-684.
|
[22] |
倪冬春. 致病性肠杆菌源毒素黏附因子(一型菌毛)生物合成的结构基础[D]. 天津: 天津医科大学, 2014.
|
[23] |
CONNELL I, AGACE W, KLEMM P, et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9827-9832.
|
[24] |
MUHLDORFER I, ZIEBUHR W, HACKER J. Escherichia coli in urinary tract infections[M]//Molecular Medical Microbiology. Amsterdam: Elsevier, 2002: 1515-1540.
|
[25] |
HOSPENTHAL M, REDZEJ A, DODSON K, et al. Structure of a chaperone-usher pilus reveals the molecular basis of rod uncoiling[J]. Cell, 2016, 164(1/2): 269-278.
|
[26] |
LUND B, LINDBERG F, MARKLUND B I, et al. The PapG protein is the alpha-D-galactopyranosyl-(1: 4)-beta-D-galactopyranose-binding adhesin of Uropathogenic escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(16): 5898-5902.
|
[27] |
PELICIC V. Type Ⅳ pili: e pluribus unum?[J]. Molecular Microbiology, 2008, 68(4): 827-837.
|
[28] |
STROM M S, NUNN D N, LORY S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type Ⅳ pilin family[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(6): 2404-2408.
|
[29] |
COLLINS R F, SALEEM M, DERRICK J P. Purification and three-dimensional electron microscopy structure of the Neisseria meningitidis type Ⅳ pilus biogenesis protein PilG[J]. Journal of Bacteriology, 2007, 189(17): 6389-6396.
|
[30] |
BURROWS L L. Weapons of mass retraction[J]. Molecular Microbiology, 2005, 57(4): 878-888.
|
[31] |
CRAIG L, LI J. Type Ⅳ pili: paradoxes in form and function[J]. Current Opinion in Structural Biology, 2008, 18(2): 267-277.
|
[32] |
GLOVER L. mSphere of influence: expanding the CRISPR sphere with single-locus proteomics[J]. mSphere, 2020, 5(1): e00001-e00020.
|
[33] |
HAMMER N D, SCHMIDT J C, CHAPMAN M R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(30): 12494-12499.
|
[34] |
ROBINSON L S, ASHMAN E M, HULTGREN S J, et al. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein[J]. Molecular Microbiology, 2006, 59(3): 870-881.
|
[35] |
STARKS A M, FROEHLICH B J, JONES T N, et al. Assembly of CS1 pili: the role of specific residues of the major pilin, CooA[J]. Journal of Bacteriology, 2006, 188(1): 231-239.
|
[36] |
SAKELLARIS H, MUNSON G P, SCOTT J R. A conserved residue in the tip proteins of CS1 and CFA/I pili of enterotoxigenic Escherichia coli that is essential for adherence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22): 12828-12832.
|
[37] |
高晓蓉, 朱丽晖, 周玉嫚. 非降解菌Pseudomonas sp. JM2-gfp细胞特性对生物膜形成能力的影响及其在植物根表的定殖[J]. 微生物学通报, 2021, 48(11): 4019-4029.
|
[38] |
姚骏磊. 多粘类芽孢杆菌生物膜形成机制及定殖研究[D]. 杭州: 浙江农林大学, 2019.
|
[39] |
CHIAVELLI D A, MARSH J W, TAYLOR R K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton[J]. Applied and Environmental Microbiology, 2001, 67(7): 3220-3225.
|
[40] |
UHLICH G A, COOKE P H, SOLOMON E B. Analyses of the red-dry-rough phenotype of an Escherichia coli O157: H7 strain and its role in biofilm formation and resistance to antibacterial agents[J]. Applied and Environmental Microbiology, 2006, 72(4): 2564-2572.
|
[41] |
RENDÓN M A, SALDAÑA Z, ERDEM A L, et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10637-10642.
|
[42] |
HUNG C, ZHOU Y Z, PINKNER J S, et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure[J]. mBio, 2013, 4(5): e00645-e00613.
|
[43] |
OLSÉN A, JONSSON A, NORMARK S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli[J]. Nature, 1989, 338(6217): 652-655.
|
[44] |
KIM Y G, LEE J H, GWON G, et al. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157: H7[J]. Scientific Reports, 2016, 6: 36377.
|
[45] |
MEIBOM K L, LI X B, NIELSEN A T, et al. The Vibrio cholerae chitin utilization program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(8): 2524-2529.
|
[46] |
WATNICK P I, FULLNER K J, KOLTER R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor[J]. Journal of Bacteriology, 1999, 181(11): 3606-3609.
|
[47] |
ALEKSANDROWICZ A, KHAN M M, SIDORCZUK K, et al. Whatever makes them stick-Adhesins of avian pathogenic Escherichia coli[J]. Veterinary Microbiology, 2021, 257: 109095.
|
[48] |
HORIUCHI S, INAGAKI Y, OKAMURA N, et al. Type 1 pili enhance the invasion of Salmonella braenderup and Salmonella typhimurium to HeLa cells[J]. Microbiology and Immunology, 1992, 36(6): 593-602.
|
[49] |
ANTÃO E M, EWERS C, GÜRLEBECK D, et al. Signature-tagged mutagenesis in a chicken infection model leads to the identification of a novel avian pathogenic Escherichia coli fimbrial adhesin[J]. PLoS One, 2009, 4(11): e7796.
|
[50] |
HARSHEY R M, KAWAGISHI I, MADDOCK J, et al. Function, diversity, and evolution of signal transduction in prokaryotes[J]. Developmental Cell, 2003, 4(4): 459-465.
|
[51] |
ESSEX-LOPRESTI A E, BODDEY J A, THOMAS R, et al. A type Ⅳ pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo[J]. Infection and Immunity, 2005, 73(2): 1260-1264.
|
[52] |
PIJPER A. Bacterial flagella and motility[J]. Nature, 1948, 161(4084): 200-201.
|
[53] |
MATTICK J S. Type Ⅳ pili and twitching motility[J]. Annual Review of Microbiology, 2002, 56: 289-314.
|
[54] |
ALLARD-MASSICOTTE R, TESSIER L, LÉCUYER F, et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio, 2016, 7(6): e01664-e01616.
|
[55] |
ELLISON C K, KAN J B, DILLARD R S, et al. Obstruction of pilus retraction stimulates bacterial surface sensing[J]. Science, 2017, 358(6362): 535-538.
|
[56] |
NIETO V, KROKEN A R, GROSSER M R, et al. Type Ⅳ pili can mediate bacterial motility within epithelial cells[J]. mBio, 2019, 10(4): e02880-e02818.
|
[57] |
BRADLEY D E. The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili[J]. Virology, 1974, 58(1): 149-163.
|
[58] |
BIAIS N, LADOUX B, HIGASHI D, et al. Cooperative retraction of bundled type Ⅳ pili enables nanonewton force generation[J]. PLoS Biology, 2008, 6(4): e87.
|
[59] |
MERZ A J, SO M, SHEETZ M P. Pilus retraction powers bacterial twitching motility[J]. Nature, 2000, 407: 98-102.
|
[60] |
COMOLLI J C, HAUSER A R, WAITE L, et al. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia[J]. Infection and Immunity, 1999, 67(7): 3625-3630.
|