[1] LONG X H, LIU L P, SHAO T Y, et al. Developing and sustainably utilize the coastal mudflat areas in China[J]. Science of the Total Environment, 2016, 569/570:1077-1086. [2] 张勇, 徐国华, 渠慎春, 等. 沿海滩涂开发利用模式与创新途径[J]. 江苏农业科学, 2018, 46(12):266-271. [3] 孟庆峰, 杨劲松, 姚荣江, 等. 施用氮磷肥对苏北滩涂围垦土壤盐渍化水平的影响[J]. 灌溉排水学报, 2012, 31(4):16-20. [4] 张瑞, 杨昊, 张芙蓉, 等. 生物竹炭改良崇明滩涂盐渍化土壤的试验研究[J]. 农业环境科学学报, 2014, 33(12):2404-2411. [5] 徐彩瑶, 濮励杰, 朱明. 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018, 38(3):1148-1162. [6] SIGUA G C, NOVAK J M, WATTS D W, et al.Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols[J]. Chemosphere, 2016, 145:135-141. [7] LEHMANN J, KLEBER M.The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580):60-68. [8] ZHANG J N, LÜ F, ZHANG H, et al.Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication[J]. Scientific Reports, 2015, 5:9406. [9] LUO X X, WANG L Y, LIU G C, et al.Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China[J]. Ecological Engineering, 2016, 94:329-336. [10] LU H Y, FENG Y F, FENG Y Y, et al.Cerium-modified biochar: a recycling biomaterial for regulating phosphorus availability in paddy ecosystem from coastal mudflat reclamation[J]. Geoderma, 2019, 346:43-51. [11] ZHANG J N, ZHOU S, SUN H F, et al.Three-year rice grain yield responses to coastal mudflat soil properties amended with straw biochar[J]. Journal of Environmental Management, 2019, 239:23-29. [12] ZHANG J N, ZHOU S, SUN H F, et al.The soluble fraction from straw-derived biochar supplies nutrients and affects carbon storage of coastal mudflat soil in rice paddy[J]. Environmental Science and Pollution Research, 2020, 27(15):18079-18088. [13] SUN H J, LU H Y, CHU L, et al.Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil[J]. Science of the Total Environment, 2017, 575:820-825. [14] 赵秀芳, 杨劲松, 姚荣江. 基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究[J]. 土壤学报, 2010, 47(3):422-428. [15] 徐霞倩, 顾介明, 顾春军, 等. 浦东滩涂土壤综合改良技术和应用效应研究[J]. 上海农业学报, 2016, 32(3):110-114. [16] 朱凤武, 徐彩瑶, 濮励杰, 等. 苏北滩涂围垦区土壤碳氮磷含量及其生态化学计量特征[J]. 中国土地科学, 2017, 31(12): 77-83. [17] 林黎, 崔军, 陈学萍, 等. 滩涂围垦和土地利用对土壤微生物群落的影响[J]. 生态学报, 2014, 34(4):899-906. [18] 米迎宾, 杨劲松, 姚荣江, 等. 不同措施对滨海盐渍土壤呼吸、电导率和有机碳的影响[J]. 土壤学报, 2016, 53(3):612-620. [19] 张建兵, 杨劲松, 姚荣江, 等. 有机肥与覆盖方式对滩涂围垦农田水盐与作物产量的影响[J]. 农业工程学报, 2013, 29(15):116-125. [20] 付红波, 李取生, 骆承程, 等. 珠三角滩涂围垦农田土壤和农作物重金属污染[J]. 农业环境科学学报, 2009, 28(6):1142-1146. [21] 张华, 苏子晓, 李明月, 等. 辽东半岛东南沿海滩涂湿地土壤重金属潜在生态风险评价[J]. 辽宁师范大学学报(自然科学版), 2018, 41(1):111-117. [22] 朱广灿. 盐城滨海滩涂土壤中铅镉含量分布特征[J]. 污染防治技术, 2010, 23(6):15-18. [23] 姚荣江, 杨劲松, 谢文萍, 等. 沿海滩涂区土壤重金属含量分布及其有效态影响因素[J]. 中国生态农业学报, 2017, 25(2):287-298. [24] 刘志杰, 李培英, 张晓龙, 等. 黄河三角洲滨海湿地表层沉积物重金属区域分布及生态风险评价[J]. 环境科学, 2012, 33(4):1182-1188. [25] 曲长凤, 杨劲松, 姚荣江, 等. 不同改良剂对苏北滩涂盐碱土壤改良效果研究[J]. 灌溉排水学报, 2012, 31(3):21-25. [26] ZOCA S M, PENN C.An important tool with No instruction manual[M]//Advances in a Agronomy. Amsterdam: Elsevier, 2017: 1-44. [27] BAI Y C, GU C H, TAO T Y, et al.Responses of ryegrass (Lolium perenne L.) grown in mudflats to sewage sludge amendment[J]. Journal of Integrative Agriculture, 2014, 13(2):426-433. [28] 黄顾林, 左文刚, 朱晓雯, 等. 不同有机物料改良新围垦滩涂土壤的效果研究[J]. 扬州大学学报(农业与生命科学版), 2015, 36(2):51-56. [29] 张蛟, 崔士友, 冯芝祥. 种植碱蓬和秸秆覆盖对沿海滩涂极重度盐土盐分动态与脱盐效果的影响[J]. 应用生态学报, 2018, 29(5):1686-1694. [30] MAO Y M, LI X P, DICK W A, et al.Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China[J]. Journal of Environmental Sciences, 2016, 45:224-232. [31] ZHANG J N, CHEN G F, SUN H F, et al.Straw biochar hastens organic matter degradation and produces nutrient-rich compost[J]. Bioresource Technology, 2016, 200:876-883. [32] ZHU J, QU B, LI M.Phosphorus mobilization in the Yeyahu Wetland: phosphatase enzyme activities and organic phosphorus fractions in the rhizosphere soils[J]. International Biodeterioration & Biodegradation, 2017, 124:304-313. [33] SONG Y J, ZHANG X L, MA B, et al.Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil[J]. Biology and Fertility of Soils, 2014, 50(2):321-332. [34] ZHANG J N, LÜ F, LUO C H, et al.Humification characterization of biochar and its potential as a composting amendment[J]. Journal of Environmental Sciences, 2014, 26(2):390-397. [35] LIU Z Y, DEMISIE W, ZHANG M K.Simulated degradation of biochar and its potential environmental implications[J]. Environmental Pollution, 2013, 179:146-152. [36] 李建国, 王文超, 濮励杰, 等. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6):599-614. [37] ZHANG Y J, LIN F, WANG X F, et al.Annual accounting of net greenhouse gas balance response to biochar addition in a coastal saline bioenergy cropping system in China[J]. Soil and Tillage Research, 2016, 158:39-48. [38] 孙运朋, 杨劲松, 姚荣江, 等. 生物炭和无机肥对盐碱滩涂围垦农田土壤性状的影响[J]. 土壤通报, 2017, 48(2):454-459. [39] 徐振涛, 梁鹏, 吴胜春, 等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4):832-841. [40] 张艺腾, 范禹博, 徐笑天, 等. 鸡粪生物炭对土壤铜和锌形态及植物吸收的影响[J]. 农业环境科学学报, 2018, 37(11): 2514-2521. [41] MOORE F, GONZÁLEZ M E, KHAN N, et al. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils[J]. Science of the Total Environment, 2018, 616/617:960-969. [42] AHMAD M, USMAN A R A, AL-FARAJ A S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J]. Chemosphere, 2018, 194:327-339. [43] SAJJADI B, BROOME J W, CHEN W Y, et al.Urea functionalization of ultrasound-treated biochar: a feasible strategy for enhancing heavy metal adsorption capacity[J]. Ultrasonics Sonochemistry, 2019, 51:20-30. [44] QIU Y P, CHENG H Y, XU C, et al.Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption[J]. Water Research, 2008, 42(3):567-574. [45] OLIVEIRA F R, PATEL A K, JAISI D P, et al.Environmental application of biochar: current status and perspectives[J]. Bioresource Technology, 2017, 246:110-122. [46] CAO X D, MA L N, GAO B, et al.Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9):3285-3291. [47] CAO X D, MA L N, LIANG Y, et al.Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11):4884-4889. [48] ABDUL G, ZHU X Y, CHEN B L.Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters[J]. Chemical Engineering Journal, 2017, 319:9-20. |