Journal of Zhejiang Agricultural Sciences ›› 2022, Vol. 63 ›› Issue (4): 729-732.DOI: 10.16178/j.issn.0528-9017.20212759
Previous Articles Next Articles
Received:
2021-12-13
Online:
2022-04-11
Published:
2022-04-06
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20212759
[1] | REN H Y, YU H Y, ZHANG S W, et al. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry[J]. BMC Genomics, 2019(20):458-472. |
[2] | 任海英, 郑锡良, 张淑文, 等. 杨梅衰弱病病症及病树矿质营养分析[J]. 浙江农业科学, 2020, 61(10):2043-2048. |
[3] | 汪景彦, 李枝茂, 韩平巷, 等. 微生物肥料在复壮衰弱苹果园中的作用[J]. 果农之友, 2013(5):21-22. |
[4] | 杜社妮, 白岗栓, 郭东峰, 等. 渭北旱塬衰弱苹果树更新修剪技术[J]. 北方园艺, 2017(15):202-206. |
[5] | 王厚臣, 隋秀奇, 姜召涛, 等. 烟台苹果树势衰弱的原因及对策[J]. 北方果树, 2019(4):29-30. |
[6] | 张雅淇. 果树树势衰弱的挽救措施[J]. 现代园艺, 2020, 43(20):22-23. |
[7] | 汪兆, 任海英, 郑锡良, 等. 衰弱杨梅树根际土壤微生物多样性研究[J]. 浙江农业科学, 2021, 62(6):1123-1128, 1132. |
[8] |
REN H Y, WANG H Y, QI X J, et al. The damage caused by decline disease in bayberry plants through changes in soil properties, rhizosphere microbial community structure and metabolites[J]. Plants, 2021, 10:2083.
DOI URL |
[9] | GUO X W, LI K, GUO Y S, et al. Effect of grape replant on the soil microbial community structure and diversity[J]. Biotechnology & Biotechnological Equipment, 2011, 25(2):2334-2340. |
[10] |
SUN J, ZHANG Q, ZHOU J, et al. Illumina amplicon sequencing of 16S rRNA tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site[J]. PLoS One, 2014, 9(10):e111744.
DOI URL |
[11] | 郑锡良, 任海英, 戚行江, 等. 生物有机肥复壮杨梅树势及改良果实品质的效应[J]. 中国南方果树, 2015, 44(6):59-62. |
[12] | 任海英, 王剑, 郑锡良, 等. 生物有机肥对衰弱病杨梅营养改良及强壮树势的作用[J]. 中国农学通报, 2021, 37(16):127-137. |
[13] |
WANG L, LI J, YANG F, et al. Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil[J]. Microbial Ecology, 2017, 73(2):404-416.
DOI URL |
[14] |
SHANG L R, WAN L Q, ZHOU X X, et al. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China[J]. PLoS One, 2020, 15(10):e0240559.
DOI URL |
[15] |
ZUBAIR M, WANG S Q, ZHANG P Y, et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective[J]. Bioresource Technology, 2020, 301:122823.
DOI URL |
[16] |
WANG Z T, GENG Y B, LIANG T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits[J]. Science of the Total Environment, 2020, 713:136439.
DOI URL |
[17] |
WU L N, JIANG Y, ZHAO F Y, et al. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil[J]. Scientific Reports, 2020, 10:9568.
DOI URL |
[18] |
ZHAO S, LIU D Y, LING N, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil[J]. Biology and Fertility of Soils, 2014, 50(5):765-774.
DOI URL |
[19] |
ZHANG H, HUA Z W, LIANG W Z, et al. The prevention of bio-organic fertilizer fermented from cow manure compost by Bacillus sp. XG-1 on watermelon continuous cropping barrier[J]. International Journal of Environmental Research and Public Health, 2020, 17(16):5714.
DOI URL |
[20] | 尤建林, 高恒锦, 任海英. 生物炭基肥对衰弱杨梅树果实品质的改良作用[J]. 福建农业科技, 2021, 52(5):33-37. |
[21] | 李大伟, 周加顺, 潘根兴, 等. 生物质炭基肥施用对蔬菜产量和品质以及氮素农学利用率的影响[J]. 南京农业大学学报, 2016, 39(3):433-440. |
[22] | 秦亚旭, 王冲, 郑朝霞, 等. 生物炭基肥对苹果产量品质及土壤肥力的影响[J]. 北方园艺, 2020 (18):18-24. |
[23] | 张建斌, 戚行江, 吴世军, 等. 氨基酸水溶肥对复壮杨梅树势和改善果实品质的作用[J]. 湖南农业科学, 2021(5):27-29. |
[24] | 许会会, 陈光, 王春夏, 等. 含氨基酸水溶肥对葡萄产量与质量及经济效益的影响[J]. 现代农业科技, 2018 (24):57-60. |
[25] | 温逸俊, 况晨光, 贾永林, 等. 含氨基酸水溶肥料(早熟蜜柑)肥效试验报告[J]. 中国园艺文摘, 2017, 33(10):47-48,156. |
[26] | 郭鲁宏, 张文华. 多肽α-氨基酸微量元素水溶肥在柑橘上的应用研究[J]. 四川农业科技, 2020(6):43-45. |
[27] | 张大琪, 颜冬冬, 方文生, 等 . 生物熏蒸: 环境友好型土壤熏蒸技术[J]. 农药学学报, 2020, 22(1):11-18. |
[28] |
MANICI L M, KELDERER M, CAPUTO F, et al. Impact of cover crop in pre-plant of apple orchards: relationship between crop health, root inhabiting fungi and rhizospheric bacteria[J]. Canadian Journal of Plant Science, 2015, 95(5):947-958.
DOI URL |
[29] | 吕毅, 宋富海, 李园园, 等. 轮作不同作物对苹果园连作土壤环境及平邑甜茶幼苗生理指标的影响[J]. 中国农业科学, 2014, 47(14):2830-2839. |
[30] |
MAZZOLA M, HEWAVITHARANA S S, STRAUSS S L. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation[J]. Phytopathology, 2015, 105(4):460-469.
DOI URL |
[31] |
MAZZOLA M, GU Y H. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials[J]. Phytopathology, 2000, 90(2):114-119.
DOI URL |
[32] | 杨金娥, 李建, 罗峰谊. 猕猴桃园枝叶堆肥技术[J]. 山西果树, 2014(4):55. |
[33] | 曹刚, 李红旭, 赵明新, 等. 微生物菌剂浓度对梨树废弃枝条堆肥化处理的影响[J]. 甘肃农业科技, 2017(12):43-46. |
[34] | 次仁吉保, 赵联芳, 王成, 等. 添加菌剂和不同C/N对葡萄枝条堆肥效果的影响[J]. 安徽农业科学, 2019, 47(2):71-74. |
[35] | 任海英, 王剑, 戚行江, 等. 10种杀菌剂对衰弱病杨梅的树势复壮作用[J]. 浙江农业科学, 2021, 62(11):27-30. |
[36] | 周晓肖, 杨肖芳, 邱莉萍, 等. 杀菌剂组合对草莓炭疽病的防效及其对草莓生长和品质影响[J]. 现代农药, 2018, 17(5):42-45. |
[37] | 陈绍彬, 储春荣. 阿米西达对枇杷生长、抗寒性及果实品质的影响[J]. 福建果树, 2005(4):35-36. |
[38] |
WANG S H, JEYASEELAN J, LIU Y, et al. Characterization and optimization of amylase production in Wanglb, a high amylase-producing strain of Bacillus[J]. Applied Biochemistry and Biotechnology, 2016, 180(1):136-151.
DOI URL |
[39] | 尹承苗, 王玫, 王嘉艳, 等. 苹果连作障碍研究进展[J]. 园艺学报, 2017, 44(11):2215-2230. |
[40] | 王晓琪, 姜伟涛, 姚媛媛, 等. 苹果连作障碍土壤微生物的研究进展[J]. 园艺学报, 2020, 47(11):2223-2237. |
[41] | 麻耀华, 尹淑丽, 张丽萍, 等. 复合微生态制剂对黄瓜根际土壤微生物数量和酶活性的影响[J]. 植物保护, 2012, 38(2):46-50. |
[42] | 郭晓霞, 田露, 樊福义, 等. 微生态制剂对重茬甜菜根腐病防控及产质量水平提升的影响[J]. 西北农业学报, 2019, 28(9):1460-1468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||