Journal of Zhejiang Agricultural Sciences ›› 2022, Vol. 63 ›› Issue (6): 1182-1187.DOI: 10.16178/j.issn.0528-9017.20212896
Previous Articles Next Articles
Received:
2021-11-02
Online:
2022-06-11
Published:
2022-06-14
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20212896
排名 | 国家 | 发文量 | 占比/% | 总当地被引数 | 篇被引数 |
---|---|---|---|---|---|
1 | 中国 | 4 242 | 44.7 | 60 268 | 14.2 |
2 | 美国 | 1 615 | 17.0 | 49 354 | 30.6 |
3 | 澳大利亚 | 654 | 6.9 | 19 726 | 30.2 |
4 | 韩国 | 494 | 5.2 | 11 060 | 22.4 |
5 | 印度 | 419 | 4.4 | 5 602 | 13.4 |
6 | 巴基斯坦 | 400 | 4.2 | 5 717 | 14.3 |
7 | 加拿大 | 393 | 4.1 | 6 129 | 15.6 |
8 | 英国 | 393 | 4.1 | 11 915 | 30.3 |
9 | 德国 | 381 | 4.0 | 9 818 | 25.8 |
10 | 西班牙 | 308 | 3.2 | 6 272 | 20.4 |
总数 | 9 299 | 97.9 | 14.2 |
排名 | 国家 | 发文量 | 占比/% | 总当地被引数 | 篇被引数 |
---|---|---|---|---|---|
1 | 中国 | 4 242 | 44.7 | 60 268 | 14.2 |
2 | 美国 | 1 615 | 17.0 | 49 354 | 30.6 |
3 | 澳大利亚 | 654 | 6.9 | 19 726 | 30.2 |
4 | 韩国 | 494 | 5.2 | 11 060 | 22.4 |
5 | 印度 | 419 | 4.4 | 5 602 | 13.4 |
6 | 巴基斯坦 | 400 | 4.2 | 5 717 | 14.3 |
7 | 加拿大 | 393 | 4.1 | 6 129 | 15.6 |
8 | 英国 | 393 | 4.1 | 11 915 | 30.3 |
9 | 德国 | 381 | 4.0 | 9 818 | 25.8 |
10 | 西班牙 | 308 | 3.2 | 6 272 | 20.4 |
总数 | 9 299 | 97.9 | 14.2 |
排名 | 机构 | 发文量 | 占比/ % | 总当地 被引数 | 篇被 引数 |
---|---|---|---|---|---|
1 | 中国科学院 | 781 | 8.2 | 10 967 | 14.0 |
2 | 美国农业部 | 292 | 3.1 | 4 684 | 16.0 |
3 | 中国科学院大学 | 263 | 2.8 | 2 716 | 10.3 |
4 | 浙江大学 | 261 | 2.7 | 6 336 | 24.3 |
5 | 中国科学院南京土壤研究所 | 219 | 2.3 | 614 | 2.8 |
6 | 佛罗里达州立大学系统 | 218 | 2.3 | 1 201 | 5.5 |
7 | 南京农业大学 | 205 | 2.2 | 4 708 | 23.0 |
8 | 佛罗里达大学 | 204 | 2.1 | 11 652 | 57.1 |
9 | 中国农业科学院 | 194 | 2.0 | 962 | 5.0 |
10 | 西北农林科技大学 | 174 | 1.8 | 1 644 | 9.4 |
排名 | 机构 | 发文量 | 占比/ % | 总当地 被引数 | 篇被 引数 |
---|---|---|---|---|---|
1 | 中国科学院 | 781 | 8.2 | 10 967 | 14.0 |
2 | 美国农业部 | 292 | 3.1 | 4 684 | 16.0 |
3 | 中国科学院大学 | 263 | 2.8 | 2 716 | 10.3 |
4 | 浙江大学 | 261 | 2.7 | 6 336 | 24.3 |
5 | 中国科学院南京土壤研究所 | 219 | 2.3 | 614 | 2.8 |
6 | 佛罗里达州立大学系统 | 218 | 2.3 | 1 201 | 5.5 |
7 | 南京农业大学 | 205 | 2.2 | 4 708 | 23.0 |
8 | 佛罗里达大学 | 204 | 2.1 | 11 652 | 57.1 |
9 | 中国农业科学院 | 194 | 2.0 | 962 | 5.0 |
10 | 西北农林科技大学 | 174 | 1.8 | 1 644 | 9.4 |
排名 | 作者 | 国家 | 发文量 | 总当地 被引数 | H指数 | 篇被引 次数 |
---|---|---|---|---|---|---|
1 | Ok, Yong Sik | 韩国 | 238 | 7 620 | 82 | 32.0 |
2 | Gao, Bin | 美国 | 126 | 7 761 | 72 | 61.6 |
3 | Tsang, Daniel C. W. | 中国(香港) | 118 | 2 217 | 66 | 18.8 |
4 | 王海龙 | 中国 | 86 | 2 662 | 46 | 31.0 |
5 | 曾光明 | 中国 | 82 | 2 414 | 137 | 29.4 |
6 | Joseph, Stephen | 澳大利亚 | 73 | 3 517 | 35 | 48.2 |
7 | 曹心德 | 中国 | 72 | 4 448 | 46 | 61.8 |
8 | Xing, Baoshan | 美国 | 63 | 2 251 | 91 | 35.7 |
9 | Lehmann, Johannes | 美国 | 59 | 6 070 | 76 | 102.9 |
10 | Oleszczuk, Patryk | 波兰 | 59 | 1 199 | 39 | 20.3 |
排名 | 作者 | 国家 | 发文量 | 总当地 被引数 | H指数 | 篇被引 次数 |
---|---|---|---|---|---|---|
1 | Ok, Yong Sik | 韩国 | 238 | 7 620 | 82 | 32.0 |
2 | Gao, Bin | 美国 | 126 | 7 761 | 72 | 61.6 |
3 | Tsang, Daniel C. W. | 中国(香港) | 118 | 2 217 | 66 | 18.8 |
4 | 王海龙 | 中国 | 86 | 2 662 | 46 | 31.0 |
5 | 曾光明 | 中国 | 82 | 2 414 | 137 | 29.4 |
6 | Joseph, Stephen | 澳大利亚 | 73 | 3 517 | 35 | 48.2 |
7 | 曹心德 | 中国 | 72 | 4 448 | 46 | 61.8 |
8 | Xing, Baoshan | 美国 | 63 | 2 251 | 91 | 35.7 |
9 | Lehmann, Johannes | 美国 | 59 | 6 070 | 76 | 102.9 |
10 | Oleszczuk, Patryk | 波兰 | 59 | 1 199 | 39 | 20.3 |
国籍 | 第一作者 | 编号 | 标题 | 期刊 | 发表 年份 | 总当地 被引数 | 总全球 被引数 |
---|---|---|---|---|---|---|---|
美国 | Lehmann J | 279 | Biochar effects on soil biota-A review | Soil Biology & Biochemistry | 2011 | 1 419 | 2 170 |
韩国 | Ahmad M | 958 | Biochar as a sorbent for contaminant management in soil and water: A review | Chemosphere | 2014 | 1 137 | 1 861 |
美国 | Keiluweit M | 143 | Dynamic molecular structure of plant biomass-derived black carbon(biochar) | Environmental Science & Technology | 2010 | 846 | 1 468 |
英国 | Atkinson C J | 185 | Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review | Plant And Soil | 2010 | 768 | 1 129 |
英国 | Jeffery S | 291 | A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis | Agriculture Ecosystems & Environment | 2011 | 747 | 1 098 |
澳大利亚 | Chan K Y | 93 | Agronomic values of greenwaste biochar as a soil amendment | Australian Journal of Soil Research | 2007 | 699 | 994 |
苏格兰 | Sohi S P | 118 | A review of biochar and its use and function in soil | Advances In Agronomy | 2010 | 683 | 1 021 |
中国 | Yuan J H | 214 | The forms of alkalis in the biochar produced from crop residues at different temperatures | Bioresource Technology | 2011 | 655 | 907 |
中国 | Chen B L | 98 | Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures | Environmental Science & Technology | 2008 | 653 | 989 |
印度 | Mohan D | 1009 | Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review | Bioresource Technology | 2014 | 598 | 1 129 |
国籍 | 第一作者 | 编号 | 标题 | 期刊 | 发表 年份 | 总当地 被引数 | 总全球 被引数 |
---|---|---|---|---|---|---|---|
美国 | Lehmann J | 279 | Biochar effects on soil biota-A review | Soil Biology & Biochemistry | 2011 | 1 419 | 2 170 |
韩国 | Ahmad M | 958 | Biochar as a sorbent for contaminant management in soil and water: A review | Chemosphere | 2014 | 1 137 | 1 861 |
美国 | Keiluweit M | 143 | Dynamic molecular structure of plant biomass-derived black carbon(biochar) | Environmental Science & Technology | 2010 | 846 | 1 468 |
英国 | Atkinson C J | 185 | Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review | Plant And Soil | 2010 | 768 | 1 129 |
英国 | Jeffery S | 291 | A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis | Agriculture Ecosystems & Environment | 2011 | 747 | 1 098 |
澳大利亚 | Chan K Y | 93 | Agronomic values of greenwaste biochar as a soil amendment | Australian Journal of Soil Research | 2007 | 699 | 994 |
苏格兰 | Sohi S P | 118 | A review of biochar and its use and function in soil | Advances In Agronomy | 2010 | 683 | 1 021 |
中国 | Yuan J H | 214 | The forms of alkalis in the biochar produced from crop residues at different temperatures | Bioresource Technology | 2011 | 655 | 907 |
中国 | Chen B L | 98 | Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures | Environmental Science & Technology | 2008 | 653 | 989 |
印度 | Mohan D | 1009 | Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review | Bioresource Technology | 2014 | 598 | 1 129 |
排名 | 来源出版物 | 出版国 | 发文量 | 占比/ % | 总当地 被引数 | 总全球 被引数 | 2020年 影响因子 |
---|---|---|---|---|---|---|---|
1 | Science of the Total Environment | 荷兰 | 579 | 6.09 | 6 921 | 17 786 | 7.96 |
2 | Bioresource Technology | 荷兰 | 479 | 5.04 | 15 253 | 34 430 | 9.64 |
3 | Chemosphere | 英国 | 386 | 4.06 | 11 614 | 22 842 | 7.09 |
4 | Environmental Science And Pollution Research | 德国 | 362 | 3.81 | 3 162 | 6 553 | 4.22 |
5 | Journal of Hazardous Materials | 荷兰 | 201 | 2.12 | 4 015 | 9 754 | 10.59 |
6 | Journal of Environmental Management | 英国 | 197 | 2.07 | 3 651 | 8 178 | 6.79 |
7 | Chemical Engineering Journal | 荷兰 | 177 | 1.86 | 3 259 | 9 104 | 13.27 |
8 | Environmental Pollution | 英国 | 174 | 1.83 | 3 896 | 8 187 | 8.07 |
9 | Journal of Cleaner Production | 荷兰 | 158 | 1.66 | 1 377 | 4 334 | 7.25 |
10 | Journal of Soils and Sediments | 德国 | 147 | 1.55 | 2 284 | 4 439 | 3.31 |
排名 | 来源出版物 | 出版国 | 发文量 | 占比/ % | 总当地 被引数 | 总全球 被引数 | 2020年 影响因子 |
---|---|---|---|---|---|---|---|
1 | Science of the Total Environment | 荷兰 | 579 | 6.09 | 6 921 | 17 786 | 7.96 |
2 | Bioresource Technology | 荷兰 | 479 | 5.04 | 15 253 | 34 430 | 9.64 |
3 | Chemosphere | 英国 | 386 | 4.06 | 11 614 | 22 842 | 7.09 |
4 | Environmental Science And Pollution Research | 德国 | 362 | 3.81 | 3 162 | 6 553 | 4.22 |
5 | Journal of Hazardous Materials | 荷兰 | 201 | 2.12 | 4 015 | 9 754 | 10.59 |
6 | Journal of Environmental Management | 英国 | 197 | 2.07 | 3 651 | 8 178 | 6.79 |
7 | Chemical Engineering Journal | 荷兰 | 177 | 1.86 | 3 259 | 9 104 | 13.27 |
8 | Environmental Pollution | 英国 | 174 | 1.83 | 3 896 | 8 187 | 8.07 |
9 | Journal of Cleaner Production | 荷兰 | 158 | 1.66 | 1 377 | 4 334 | 7.25 |
10 | Journal of Soils and Sediments | 德国 | 147 | 1.55 | 2 284 | 4 439 | 3.31 |
关键词 | 强度 | 开始年 | 衰弱年 | 2000—2020年 |
---|---|---|---|---|
agricultural residue | 1.90 | 2000 | 2011 | |
different pyrolytic temperature | 3.11 | 2008 | 2014 | |
biochar production | 5.38 | 2011 | 2014 | |
polycyclic aromatic hydrocarbon | 4.33 | 2011 | 2016 | |
greenhouse gas emission | 4.41 | 2012 | 2014 | |
manure-derived biochar | 5.05 | 2013 | 2014 | |
hydrothermal carbonization | 4.61 | 2013 | 2015 | |
carbon mineralization | 2.92 | 2014 | 2015 | |
soil enzyme activity | 2.87 | 2014 | 2015 | |
magnetic biochar | 4.30 | 2015 | 2016 | |
soil pH | 3.21 | 2016 | 2017 | |
biochar surface | 6.70 | 2018 | 2020 | |
adsorption capacity | 6.62 | 2018 | 2020 | |
specific surface area | 6.38 | 2018 | 2020 | |
adsorption mechanism | 2.86 | 2018 | 2020 | |
functional group | 5.67 | 2019 | 2020 | |
langmuir model | 4.53 | 2019 | 2020 | |
environmental risk | 1.76 | 2019 | 2020 | |
cumulative N2O emission | 0.96 | 2019 | 2020 | |
关键词 | 强度 | 开始年 | 衰弱年 | 2000—2020年 |
---|---|---|---|---|
agricultural residue | 1.90 | 2000 | 2011 | |
different pyrolytic temperature | 3.11 | 2008 | 2014 | |
biochar production | 5.38 | 2011 | 2014 | |
polycyclic aromatic hydrocarbon | 4.33 | 2011 | 2016 | |
greenhouse gas emission | 4.41 | 2012 | 2014 | |
manure-derived biochar | 5.05 | 2013 | 2014 | |
hydrothermal carbonization | 4.61 | 2013 | 2015 | |
carbon mineralization | 2.92 | 2014 | 2015 | |
soil enzyme activity | 2.87 | 2014 | 2015 | |
magnetic biochar | 4.30 | 2015 | 2016 | |
soil pH | 3.21 | 2016 | 2017 | |
biochar surface | 6.70 | 2018 | 2020 | |
adsorption capacity | 6.62 | 2018 | 2020 | |
specific surface area | 6.38 | 2018 | 2020 | |
adsorption mechanism | 2.86 | 2018 | 2020 | |
functional group | 5.67 | 2019 | 2020 | |
langmuir model | 4.53 | 2019 | 2020 | |
environmental risk | 1.76 | 2019 | 2020 | |
cumulative N2O emission | 0.96 | 2019 | 2020 | |
[1] |
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1/2): 1-18.
DOI URL |
[2] |
DAI Z M, XIONG X Q, ZHU H, et al. Association of biochar properties with changes in soil bacterial, fungal and fauna communities and nutrient cycling processes[J]. Biochar, 2021, 3(3): 239-254.
DOI URL |
[3] |
LAIRD D A, BROWN R C, AMONETTE J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar[J]. Biofuels, Bioproducts and Biorefining, 2009, 3(5): 547-562.
DOI URL |
[4] |
MARRIS E. Black is the new green[J]. Nature, 2006, 442(7103): 624-626.
DOI URL |
[5] | 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1-7. |
[6] |
SOHI S P. Carbon storage with benefits[J]. Science, 2012, 338(6110): 1034-1035.
DOI URL |
[7] |
LI L L, DING G H, FENG N, et al. Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006[J]. Scientometrics, 2009, 80(1): 39-58.
DOI URL |
[8] | 刘杏梅, 赵健, 徐建明. 污染农田土壤的重金属钝化技术研究: 基于web of science数据库的计量分析[J]. 土壤学报, 2021, 58(2): 445-455. |
[9] | 王洪媛, 盖霞普, 翟丽梅, 等. 生物炭对土壤氮循环的影响研究进展[J]. 生态学报, 2016, 36(19): 5998-6011. |
[10] | 陈香, 李卫民, 刘勤. 基于文献计量的近30年国内外土壤微生物研究分析[J]. 土壤学报, 2020, 57(6): 1458-1470. |
[11] |
WU P, WANG Z Y, WANG H L, et al. Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review[J]. Biochar, 2020, 2(2): 135-150.
DOI URL |
[12] | 张超, 文涛, 张媛, 等. 基于文献计量分析的镰刀菌枯萎病研究进展解析[J]. 土壤学报, 2020, 57(5): 1280-1291. |
[13] |
LUCIO-ARIAS D, LEYDESDORFF L. Main-path analysis and path-dependent transitions in HistCiteTM-based historiograms[J]. Journal of the American Society for Information Science and Technology, 2008, 59(12): 1948-1962.
DOI URL |
[14] |
ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
DOI URL |
[15] |
CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
DOI URL |
[16] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33.
DOI URL |
[17] |
WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1: 56.
DOI URL |
[18] |
JEFFERY S, VERHEIJEN F G A, VAN DER VELDE M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175-187.
DOI URL |
[19] | LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836. |
[20] |
WU P, ATA-UL-KARIM S T, SINGH B P, et al. A scientometric review of biochar research in the past 20 years (1998-2018)[J]. Biochar, 2019, 1(1): 23-43.
DOI URL |
[21] |
JIAO Y X, LI D Y, WANG M, et al. A scientometric review of biochar preparation research from 2006 to 2019[J]. Biochar, 2021, 3(3): 283-298.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||