[1] |
ZHUANG S, WANG P, JIANG B R, et al. Early detection of water stress in maize based on digital images[J]. Computers and Electronics in Agriculture, 2017, 140:461-468.
DOI
URL
|
[2] |
ZHAO M H, LI X, ZHANG X X, et al. Mutation mechanism of leaf color in plants: a review[J]. Forests, 2020, 11(8):851.
DOI
URL
|
[3] |
PAGOLA M, ORTIZ R, IRIGOYEN I, et al. New method to assess barley nitrogen nutrition status based on image colour analysis: comparison with SPAD-502[J]. Computers and Electronics in Agriculture, 2009, 65(2):213-218.
DOI
URL
|
[4] |
高桓凯, 花元涛, 张凌飞, 等. 基于机器视觉技术的南疆小麦病虫害监测系统[J]. 塔里木大学学报, 2019, 31(4):73-78.
|
[5] |
PARRY C, BLONQUIST J M, BUGBEE B. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship[J]. Plant, Cell & Environment, 2014, 37(11):2508-2520.
|
[6] |
MOTSARA MR, ROY RN. Guide to laboratory establishment for plant nutrient analysis[M]. Rome:Food and Agriculture Organization of the United Nations, 2008.
|
[7] |
CAI J H, OKAMOTO M, ATIENO J, et al. Quantifying the onset and progression of plant senescence by color image analysis for high throughput applications[J]. PLoS One, 2016, 11(6):e0157102.
DOI
URL
|
[8] |
GRUNENFELDER L, HILLER L K, KNOWLES N R. Color indices for the assessment of chlorophyll development and greening of fresh market potatoes[J]. Postharvest Biology and Technology, 2006, 40(1):73-81.
DOI
URL
|
[9] |
CHEN Z M, WANG F Z, ZHANG P, et al. Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model[J]. Plant Methods, 2020, 16:23.
DOI
URL
|
[10] |
崔小涛. 油菜叶片叶绿素含量高光谱估算研究[D]. 杨凌: 西北农林科技大学, 2021.
|
[11] |
LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382.
|
[12] |
李兴久. 基于卷积神经网络的无人机遥感影像洪水水体识别和自动提取研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
|
[13] |
邓翠玲, 佘敦先, 张利平, 等. 基于图像三维连通性识别方法的长江流域干旱事件特征[J]. 农业工程学报, 2021, 37(11):131-139.
|
[14] |
袁璐, 袁自然, 屠人凤, 等. 基于无人机遥感可见光参数的水稻氮素营养诊断[J]. 安徽农学通报, 2021, 27(10):35-37, 123.
|
[15] |
ZHANG Y H, TANG L, LIU X J, et al. Modeling dynamics of leaf color based on RGB value in rice[J]. Journal of Integrative Agriculture, 2014, 13(4):749-759.
DOI
URL
|
[16] |
李源彬, 李凌, 穆炯. 基于图像特征的黄瓜叶片叶绿素含量分布测试方法[J]. 山东农业大学学报(自然科学版), 2020, 51(6):1004-1009.
|
[17] |
刘仕元, 梁晋, 王帅斌, 等. 基于无人机遥感的花生叶片叶绿素含量监测研究[J]. 花生学报, 2020, 49(2):21-27, 35.
|
[18] |
刘子恒, 敏乾, 李海翼. 数字图像技术在苦菜叶绿素含量测量中的应用[J]. 贵州大学学报(自然科学版), 2017, 34(6):11-13, 38.
|
[19] |
ALI M M, AHME D, AL-ANI, et al. An algorithm based on the RGB colour model to estimate plant chlorophyll and nitrogen contents[C]//2013 International Conference on Sustainable Environment and Agriculture.
|
[20] |
SÁNCHEZ-SASTRE L F, ALTE DA VEIGA N M S, RUIZ-POTOSME N M, et al. Assessment of RGB vegetation indices to estimate chlorophyll content in sugar beet leaves in the final cultivation stage[J]. AgriEngineering, 2020, 2(1):128-149.
DOI
URL
|
[21] |
ÖZREÇBEROĞLU N, KAHRAMANOĞLU I. Mathematical models for the estimation of leaf chlorophyll content based on RGB colours of contact imaging with smartphones: a pomegranate example[J]. Folia Horticulturae, 2020, 32(1):57-67.
DOI
URL
|
[22] |
SONG Y F, TENG G F, YUAN Y C, et al. Assessment of wheat chlorophyll content by the multiple linear regression of leaf image features[J]. Information Processing in Agriculture, 2021, 8(2):232-243.
DOI
URL
|
[23] |
GUO Y H, YIN G D, SUN H Y, et al. Scaling effects on chlorophyll content estimations with RGB camera mounted on a UAV platform using machine-learning methods[J]. Sensors, 2020, 20(18):5130.
DOI
URL
|
[24] |
DAMAYANTI R, SANDRA, DAHLENA E. The artificial neural network to predict chlorophyll content of cassava (Manihot esculenta) leaf[J]. IOP Conference Series: Earth and Environmental Science, 2020, 475(1):012012.
DOI
URL
|