[1] |
MATSUMOTO H, FAN X, WANG Y, et al. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72.
|
[2] |
ZHAO Y, CHENG J L, XIE Z G, et al. Syntheses and insecticidal activity of spirocyclic tetronic acid derivatives containing oxime ether moiety[J]. Chemical Research in Chinese Universities, 2020, 36(5): 810-815.
|
[3] |
程敬丽, 朱金文, 魏方林, 等. 机械能与界面张力在农药水乳剂制备中的作用机理研究[J]. 农药学学报, 2004, 6(2): 62-67.
|
[4] |
ZHAO K F, HU J, MA Y, et al. Topology-regulated pesticide retention on plant leaves through concave Janus carriers[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13148-13156.
|
[5] |
WANG M, ZHANG G L, ZHOU L L, et al. Fabrication of pH-controlled-release ferrous foliar fertilizer with high adhesion capacity based on nanobiomaterial[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6800-6808.
|
[6] |
XIANG Y B, HAN J, ZHANG G L, et al. Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3649-3658.
|
[7] |
王娣, 狄珊珊, 王新全, 等. 豇豆不同生长时期施用毒死蜱的膳食风险[J]. 浙江农业学报, 2021, 33(6): 1104-1109.
|
[8] |
LI N J, SUN C J, JIANG J J, et al. Advances in controlled-release pesticide formulations with improved efficacy and targetability[J]. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12579-12597.
|
[9] |
SINGH A, DHIMAN N, KAR A K, et al. Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture[J]. Journal of Hazardous Materials, 2020, 385: 121525.
|
[10] |
NEL A, XIA T, MÄDLER L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761): 622-627.
|
[11] |
MATTOS B D, TARDY B L, MAGALHÃES W L E, et al. Controlled release for crop and wood protection: recent progress toward sustainable and safe nanostructured biocidal systems[J]. Journal of Controlled Release, 2017, 262: 139-150.
|
[12] |
孙长娇, 崔海信, 王琰, 等. 纳米材料与技术在农业上的应用研究进展[J]. 中国农业科技导报, 2016, 18(1): 18-25.
|
[13] |
KAH M, HOFMANN T. Nanopesticide research: current trends and future priorities[J]. Environment International, 2014, 63: 224-235.
|
[14] |
陈福良, 田慧琴, 王仪, 等. 农药微乳剂乳液稳定性研究[J]. 农药学学报, 2005, 7(1): 63-68.
|
[15] |
孙长娇, 王琰, 赵翔, 等. 纳米农药剂型与其减施增效机理研究进展[J]. 农药学学报, 2020, 22(2): 205-213.
|
[16] |
ZHAO P Y, CAO L D, MA D K, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale, 2018, 10(4): 1798-1806.
|
[17] |
ZHAO P Y, YUAN W L, XU C L, et al. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers[J]. Journal of Agricultural and Food Chemistry, 2018, 66(44): 11592-11600.
|
[18] |
LIANG W L, XIE Z G, CHENG J L, et al. A light-triggered pH-responsive metal-organic framework for smart delivery of fungicide to control Sclerotinia diseases of oilseed rape[J]. ACS Nano, 2021, 15(4): 6987-6997.
|
[19] |
程敬丽, 肖豆鑫, 梁文龙, 等. pH响应性吡唑醚菌酯/沸石咪唑酯骨架材料纳米颗粒的制备及抑菌活性[J]. 农药学学报, 2022, 24(1): 105-113.
|
[20] |
XIAO D X, CHENG J L, LIANG W L, et al. Innovative approach to nano thiazole-Zn with promising physicochemical and bioactive properties by nanoreactor construction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11577-11583.
|
[21] |
WANG G D, XIAO Y Y, XU H H, et al. Development of multifunctional avermectin poly(succinimide) nanoparticles to improve bioactivity and transportation in rice[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11244-11253.
|
[22] |
LETCHFORD K, BURT H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65(3): 259-269.
|