| [1] |
WAQAR S, BHAT A A, KHAN A A. Endophytic fungi: unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration[J]. Plant Physiology and Biochemistry, 2024, 206: 108174.
|
| [2] |
俞嘉瑞, 袁海生. 外生菌根真菌的共生互作和宿主选择机制研究进展[J]. 菌物学报, 2023, 42(1): 86-100.
|
|
YU J R, YUAN H S. Research progress on symbiotic interaction and host selection mechanisms of ectomycorrhizal fungi[J]. Mycosystema, 2023, 42(1): 86-100.
|
| [3] |
谢伟, 郝志鹏, 张莘, 等. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515.
|
|
XIE W, HAO Z P, ZHANG X, et al. Research progress and prospect of signal transfer among plants mediated by arbuscular mycorrhizal networks[J]. Chinese Journal of Plant Ecology, 2022, 46(5): 493-515.
|
| [4] |
SHI J C, WANG X L, WANG E T. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569-607.
|
| [5] |
EL-BAKY N A, AMARA A A A F. Recent approaches towards control of fungal diseases in plants: an updated review[J]. Journal of Fungi, 2021, 7(11): 900.
|
| [6] |
孙子越, 陶增. 表观遗传调控在植物病原真菌发育和致病过程中的作用与分子机制[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 469-480.
|
|
SUN Z Y, TAO Z. Role and molecular mechanism of epigenetic regulation during the development and pathogenesis of plant pathogenic fungi[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(3): 469-480.
|
| [7] |
王子, 仇昊, 李烨凡, 等. 食药用菌表观遗传和蛋白质翻译后修饰研究进展[J]. 食用菌学报, 2024, 31(2): 1-9.
|
|
WANG Z, QIU H, LI Y F, et al. Research progress of epigenetic and protein post-translational modification of edible and medicinal fungi[J]. Acta Edulis Fungi, 2024, 31(2): 1-9.
|
| [8] |
ZHU Q H, SHAN W X, AYLIFFE M A, et al. Epigenetic mechanisms: an emerging player in plant-microbe interactions[J]. Molecular Plant-Microbe Interactions, 2016, 29(3): 187-196.
|
| [9] |
BANNISTER A J, KOUZARIDES T. Regulation of chromatin by histone modifications[J]. Cell Research, 2011, 21(3): 381-395.
|
| [10] |
LAI Y L, WANG L L, ZHENG W L, et al. Regulatory roles of histone modifications in filamentous fungal pathogens[J]. Journal of Fungi, 2022, 8(6): 565.
|
| [11] |
RAI M N, RAI R. H3K4 methylation and demethylation in fungal pathogens: the epigenetic toolbox for survival and adaptation in the host[J]. Pathogens, 2024, 13(12): 1080.
|
| [12] |
BRIGGS S D, BRYK M, STRAHL B D, et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae[J]. Genes & Development, 2001, 15(24): 3286-3295.
|
| [13] |
VAN H T, XIE G J, DONG P, et al. KMT2 family of H3K4 methyltransferases: enzymatic activity-dependent and-independent functions[J]. Journal of Molecular Biology, 2024, 436(7): 168453.
|
| [14] |
DESHPANDE N, BRYK M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1[J]. Current Genetics, 2023, 69(2/3): 91-114.
|
| [15] |
TAKAHASHI Y H, WESTFIELD G H, OLESKIE A N, et al. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51): 20526-20531.
|
| [16] |
WANG Y X, DING Z Y, LIU X Y, et al. Architecture and subunit arrangement of the complete Saccharomyces cerevisiae COMPASS complex[J]. Scientific Reports, 2018, 8(1): 17405.
|
| [17] |
DELERIS A, HALTER T, NAVARRO L. DNA methylation and demethylation in plant immunity[J]. Annual Review of Phytopathology, 2016, 54: 579-603.
|
| [18] |
TAKEUCHI T, WATANABE Y, TAKANO-SHIMIZU T, et al. Roles of jumonji and jumonji family genes in chromatin regulation and development[J]. Developmental Dynamics, 2006, 235(9): 2449-2459.
|
| [19] |
ZHENG Y C, MA J L, WANG Z R, et al. A systematic review of histone lysine-specific demethylase 1 and its inhibitors[J]. Medicinal Research Reviews, 2015, 35(5): 1032-1071.
|
| [20] |
WANG L H, ABERIN M A E, WU S A, et al. The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape[J]. Biochemical Society Transactions, 2021, 49(3): 1041-1054.
|
| [21] |
WANG Z N, REN B. Role of H3K4 monomethylation in gene regulation[J]. Current Opinion in Genetics & Development, 2024, 84: 102153.
|
| [22] |
YU H M, LESCH B J. Functional roles of H3K4 methylation in transcriptional regulation[J]. Molecular and Cellular Biology, 2024, 44(11): 505-515.
|
| [23] |
WANG H, FAN Z, SHLIAHA P V, et al. H3K4me3 regulates RNA polymerase II promoter-proximal pause-release[J]. Nature, 2023, 615(7951): 339-348.
|
| [24] |
WANG H, HELIN K. Roles of H3K4 methylation in biology and disease[J]. Trends in Cell Biology, 2025, 35(2): 115-128.
|
| [25] |
ZHOU S D, LIU X Y, SUN W Y, et al. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae[J]. Molecular Plant Pathology, 2021, 22(4): 422-439.
|
| [26] |
DALLERY J F, ADELIN É, LE GOFF G, et al. H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in Colletotrichum higginsianum[J]. Molecular Plant Pathology, 2019, 20(6): 831-842.
|
| [27] |
XU X D, CHEN Y, LI B Q, et al. Histone H3K4 methyltransferase PeSet1 regulates colonization, patulin biosynthesis, and stress responses of Penicillium expansum[J]. Microbiology Spectrum, 2023, 11(1): e0354522.
|
| [28] |
HOU J, FENG H Q, CHANG H W, et al. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence[J]. New Phytologist, 2020, 225(2): 930-947.
|
| [29] |
MENG S, SHI H, LIN C, et al. UvKmt2-mediated H3K4 trimethylation is required for pathogenicity and stress response in Ustilaginoidea virens[J]. Journal of Fungi, 2022, 8(6): 553.
|
| [30] |
黄永芳, 陈元元, 刘庆荣, 等. 表观遗传的化学干预对金龟子绿僵菌次生代谢产物影响的研究[J]. 微生物学通报, 2021, 48(11): 4221-4231.
|
|
HUANG Y F, CHEN Y Y, LIU Q R, et al. The effect of chemical intervention of epigenetics on secondary metabolites of Metarhizium anisopliae[J]. Microbiology China, 2021, 48(11): 4221-4231.
|
| [31] |
LIU Y, LIU N, YIN Y N, et al. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum[J]. Environmental Microbiology, 2015, 17(11): 4615-4630.
|
| [32] |
STUDT L, JANEVSKA S, ARNDT B, et al. Lack of the COMPASS component Ccl1 reduces H3K4 trimethylation levels and affects transcription of secondary metabolite genes in two plant-pathogenic Fusarium species[J]. Frontiers in Microbiology, 2017, 7: 2144.
|
| [33] |
YANG K L, TIAN J, KELLER N P. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review[J]. Environmental Microbiology, 2022, 24(7): 2857-2881.
|
| [34] |
BOK J W, CHIANG Y M, SZEWCZYK E, et al. Chromatin-level regulation of biosynthetic gene clusters[J]. Nature Chemical Biology, 2009, 5(7): 462-464.
|
| [35] |
SHINOHARA Y, KAWATANI M, FUTAMURA Y, et al. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae[J]. Journal of Antibiotics, 2016, 69(1): 4-8.
|
| [36] |
PFANNENSTIEL B T, GRECO C, SUKOWATY A T, et al. The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus[J]. Fungal Genetics and Biology, 2018, 120: 9-18.
|