[1] |
ISLAM I, ADAM Z, ISLAM S. Soybean (Glycine max): alternative sources of human nutrition and bioenergy for the 21st century[J]. American Journal of Food Science and Technology, 2019, 7(1): 1-6.
DOI
URL
|
[2] |
CHEN K N, ERH M H, SU N W, et al. Soyfoods and soybean products: from traditional use to modern applications[J]. Applied Microbiology and Biotechnology, 2012, 96(1): 9-22.
DOI
URL
|
[3] |
NADEEM M, LI J J, YAHYA M, et al. Grain legumes and fear of salt stress: focus on mechanisms and management strategies[J]. International Journal of Molecular Sciences, 2019, 20(4): 799.
DOI
URL
|
[4] |
PHANG T H, SHAO G H, LAM H M. Salt tolerance in soybean[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1196-1212.
DOI
URL
|
[5] |
MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.
DOI
URL
|
[6] |
高子为, 朱有成, 刘雅婧, 等. 盐胁迫对苦豆子、大豆芽期和苗期生长发育的影响[J]. 种子, 2021, 40(6): 6-13.
|
[7] |
季平. 不同类型盐碱胁迫对大豆植株生长性状和产量的影响[D]. 长春: 吉林农业大学, 2013.
|
[8] |
XU S, HU B, HE Z Y, et al. Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin[J]. International Journal of Molecular Sciences, 2011, 12(4): 2488-2501.
DOI
URL
|
[9] |
BYBORDI A. The influence of salt stress on seed germination, growth and yield of canola cultivars[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38(1): 128-133.
|
[10] |
KHODARAHMPOUR Z. Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage[J]. African Journal of Biotechnology, 2011, 11(2).
|
[11] |
HE F L, HUANG F L, WILSON K A, et al. Protein storage vacuole acidification as a control of storage protein mobilization in soybeans[J]. Journal of Experimental Botany, 2007, 58(5): 1059-1070.
DOI
URL
|
[12] |
HERMAN E M. Immunogold-localization and synthesis of an oil-body membrane protein in developing soybean seeds[J]. Planta, 1987, 172(3): 336-345.
DOI
URL
|
[13] |
孙岩, 崔国文, 张超, 等. NaCl胁迫对野大麦叶肉细胞超微结构的影响[J]. 中国草地学报, 2015, 37(6): 102-106.
|
[14] |
郑世英, 商学芳, 王丽燕, 等. 盐胁迫对玉米叶片叶肉细胞生物膜超微结构的影响[J]. 植物研究, 2009, 29(3): 299-302.
|
[15] |
FAO. Global network on integrated soil management for sustainable use of salt-affected soils[J]. Molecular Ecology & Evolutionary Biology, 2005.
|
[16] |
BEWLEY J D. Seed germination and dormancy[J]. The Plant Cell, 1997: 1055-1066.
|
[17] |
李淑艳, 王建中. 大豆种子萌发过程中蛋白质的变化[J]. 中国种业, 2009,(4): 41-43.
|
[18] |
张金霞, 董德坤, 胡兴旺, 等. 三个大豆品种萌发期和苗期的耐盐性比较[J]. 浙江农业学报, 2016, 28(7): 1101-1107.
|
[19] |
张军起, 赵霞, 张豪, 等. 不同大豆种子萌发期耐盐性分析[J]. 山西农业科学, 2019, 47(5): 770-774,779.
|
[20] |
AKBARIMOGHADDAM H, GALAVI M, GHANBARI A, et al. Salinity effects on seed germination and seedling growth of bread wheat cultivars[J]. Trakia Journal of Sciences, 2011, 9(1): 43-50.
|
[21] |
ATAK, MEHMET, KAYA, et al. Effects of NaCl on the germination, seedling growth and water uptake of triticale[J]. Turkish Journal of Agriculture & Forestry, 2006.
|
[22] |
赵红, 徐芬芬, 熊安琪, 等. 不同种类盐胁迫对水稻种子萌发和幼苗生长的影响[J]. 分子植物育种, 2021, 19(17): 5842-5847.
|
[23] |
林宝刚, 张尧锋, 余华胜, 等. 氯化钠对甘蓝型油菜种子萌发的胁迫效应[J]. 浙江农业学报, 2010, 22(5): 624-627.
|
[24] |
TZEN J, CAO Y, LAURENT P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant Physiology, 1993, 101(1):267-276.
DOI
URL
|
[25] |
SHEWRY P R, NAPIER J A, TATHAM A S. Seed storage proteins: structures and biosynthesis[J]. The Plant Cell, 1993, 101(1):267-276.
|
[26] |
THOMPSON J E, FROESE C D, MADEY E, et al. Lipid metabolism during plant senescence[J]. Progress in Lipid Research, 1998, 37(2/3): 119-141.
DOI
URL
|
[27] |
程红焱, 宋松泉. 种子的贮油细胞器: 油体及其蛋白[J]. 植物学通报, 2006, 41(4): 418-430.
|
[28] |
王慧, 马春梅, 龚振平. 大豆品种与豆芽营养品质及产量的关系研究[J]. 大豆科学, 2014, 33(3): 374-378.
|
[29] |
朱新荣, 胡筱波, 潘思轶, 等. 大豆发芽期间多种营养成分变化的研究[J]. 中国酿造, 2008, 27(12): 64-66.
|
[30] |
VOIGT E L, ALMEIDA T D, CHAGAS R M, et al. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity[J]. Journal of Plant Physiology, 2009, 166(1): 80-89.
DOI
URL
|
[31] |
PONTE L F A, SILVA A L C D, CARVALHO F E L, et al. Salt-induced delay in cotyledonary globulin mobilization is abolished by induction of proteases and leaf growth sink strength at late seedling establishment in cashew[J]. Journal of Plant Physiology, 2014, 171(15): 1362-1371.
DOI
URL
|
[32] |
ASHRAF M, WAHID S. Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress[J]. Seed Science & Technology, 2000, 28(3): 641-656.
|
[33] |
ASHRAF M, ZAFAR R, ASHRAF M Y. Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2003, 198(1): 26-36.
|
[34] |
MILED-DAOUD D B, CHERIF A. Effet du NaCl sur l'utilisation des lipides et les activitÉs enzymatiques glyoxysomales au cours de la germination de deux espèces de Medicago[J]. Canadian Journal of Botany, 1992, 70(4): 876-883.
DOI
URL
|
[35] |
吴凯, 周晓阳. 环境胁迫对植物超微结构的影响[J]. 山东林业科技, 2007, 37(3): 80-83,71.
|