[1] |
杨丽梅, 方智远. 中国甘蓝遗传育种研究60年[J]. 园艺学报, 2022, 49(10):2075-2098.
|
[2] |
陈国户, 李广, 温宏伟, 等. 萝卜春化响应相关基因鉴定及表达模式分析[J]. 浙江农业学报, 2023, 35(7):1626-1637.
|
[3] |
SHANG C Q, CAO X J, TIAN T, et al. Cross-talk between transcriptome analysis and dynamic changes of carbohydrates identifies stage-specific genes during the flower bud differentiation process of Chinese cherry (Prunus pseudocerasus L.)[J]. International Journal of Molecular Sciences, 2022, 23(24): 15562.
|
[4] |
张帅威, 周晓霞, 梁雯雯, 等. 菜心菜薹发育生理研究进展[J]. 中国瓜菜, 2023, 36(5):8-15.
|
[5] |
苏贺楠, 郝敬虹, 张利利, 等. 高温诱导叶用莴苣抽薹过程中碳氮的变化分析[J]. 核农学报, 2016, 30(8):1558-1567.
|
[6] |
汪炳良, 邓俭英, 曾广文. 萝卜花芽分化过程中茎尖和叶片碳水化合物含量的变化[J]. 园艺学报, 2004, 31(3):375-377.
|
[7] |
刘莎莎. 光周期及低温处理对菠菜抽薹的影响[D]. 泰安: 山东农业大学, 2010.
|
[8] |
李梅兰, 汪俏梅, 朱祝军, 等. 春化对白菜DNA甲基化、GA含量及蛋白质的影响[J]. 园艺学报, 2002, 29(4):353-357.
|
[9] |
奥岩松, 李式军. 大白菜发育过程中可溶性蛋白质的变化[J]. 中国蔬菜, 1997(2):21-23.
|
[10] |
杨小明, 李成琼, 宋洪元, 等. 春甘蓝花芽分化至抽薹过程中生理生化指标的变化[J]. 中国蔬菜, 2009(24):19-23.
|
[11] |
张波. 不结球白菜晚抽薹分子标记及抽薹性遗传分析[D]. 南京: 南京农业大学, 2007.
|
[12] |
杜正香, 侯瑞贤, 李晓峰, 等. 不结球白菜抽薹前后的生理生化研究[J]. 上海农业学报, 2011, 27(1):60-64.
|
[13] |
田山君, 严希, 孟繁博, 等. 萝卜抽薹特性的鉴定及抽薹前后生理生化特性的变化[J]. 北方园艺, 2017(12):1-5.
|
[14] |
严奉君, 刘独臣, 代云璐, 等. 叶用芥菜抽薹速率与现蕾期生理生化特征的关系[J]. 北方园艺, 2020(21):27-33.
|
[15] |
CAMPOS-RIVERO G, OSORIO-MONTALVO P, SÁNCHEZ-BORGES R, et al. Plant hormone signaling in flowering: an epigenetic point of view[J]. Journal of Plant Physiology, 2017,214: 16-27.
|
[16] |
PHARIS R. Gibberellins and reproductive development in seed plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1985,36: 517-568.
|
[17] |
齐仙惠, 巫东堂, 李改珍, 等. 大白菜花芽分化及抽薹过程内源激素的含量变化[J]. 现代园艺, 2018(16):5-6.
|
[18] |
ERIKSSON S, BÖHLENIUS H, MORITZ T, et al. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. The Plant Cell, 2006, 18(9): 2172-2181.
|
[19] |
GUAN H L, HUANG X M, ZHU Y N, et al. Identification of DELLA genes and key stage for GA sensitivity in bolting and flowering of flowering Chinese cabbage[J]. International Journal of Molecular Sciences, 2021, 22(22):12092.
|
[20] |
夏广清, 何启伟, 王翠花, 等. 不同生态型大白菜抽薹时内源激素含量比较[J]. 中国蔬菜, 2005(2): 21-22.
|
[21] |
HOU Y X, WANG X T, ZHU Z J, et al. Expression analysis of genes related to auxin metabolism at different growth stages of pak choi[J]. Horticultural Plant Journal, 2020, 6(1):25-33.
|
[22] |
宋贤勇, 柳李旺, 龚义勤, 等. 春萝卜抽薹过程中内源激素含量变化分析[J]. 植物研究, 2007, 27(2):182-185.
|
[23] |
CAMPBELL B T, SEEPAUL R, IBOYI J E, et al. Agronomic performance and the effect of genotype-by-environment interaction for Brassica carinata in the southeastern US[J]. Industrial Crops and Products, 2023,203: 117196.
|
[24] |
舒黄英, 郝园园, 蔡庆泽, 等. 模式植物拟南芥开花时间分子调控研究进展[J]. 植物科学学报, 2017, 35(4):603-608.
|
[25] |
JIANG M L, ZHANG Y T, YANG X L, et al. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis[J]. Frontiers in Plant Science, 2023,14: 1135684.
|
[26] |
程斐, 李式军, 奥岩松, 等. 大白菜抽薹性状的遗传规律研究[J]. 南京农业大学学报, 1999, 22(1):26.
|
[27] |
曹维荣, 王超. 甘蓝迟抽薹基因的RAPD标记[J]. 生物技术通报, 2007(5):167-169.
|
[28] |
卓祖闯, 万恩梅, 张鲁刚, 等. 大白菜抽薹性状的主基因+多基因遗传分析[J]. 西北植物学报, 2009, 29(5):923-928.
|
[29] |
郭辉. 结球甘蓝抽薹性状的遗传分析及分子标记研究[D]. 重庆: 西南大学, 2012.
|
[30] |
王五宏, 汪精磊, 李必元, 等. 结球甘蓝抽薹性遗传规律和QTL定位分析[J]. 园艺学报, 2020, 47(5):974-982.
|
[31] |
李晓锋, 朱红芳, 朱玉英, 等. 不结球白菜抽薹开花性状的主基因+多基因遗传分析[J]. 核农学报, 2016, 30(12):2318-2325.
|
[32] |
MADRID E, CHANDLER J W, COUPLAND G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history[J]. Journal of Experimental Botany, 2021, 72(1): 4-14.
|
[33] |
桂尚枝, 刘雪晴, 王英, 等. 乌菜BcVIL2基因克隆及春化响应表达分析[J]. 西南农业学报, 2023, 36(9):1843-1851.
|
[34] |
LI B J, ZHAO W G, LI D R, et al. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus[J]. Plant Science, 2018,27: 296-3107.
|
[35] |
HELLIWELL C A, WOOD C C, ROBERTSON M, et al. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex[J]. The Plant Journal, 2006, 46(2): 183-192.
|
[36] |
HYUN Y, VINCENT C, TILMES V, et al. A regulatory circuit conferring varied flowering response to cold in annual and perennial plants[J]. Science, 2019, 363(6425): 409-412.
|
[37] |
段文优. 甘蓝型油菜开花基因BnaFRI的表达模式分析及突变体创建[D]. 武汉: 华中农业大学, 2020.
|
[38] |
陈雪, 王瑞, 井付钰, 等. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证[J]. 中国农业科学, 2020, 53(6):1108-1117.
|
[39] |
YI G, PARK H, KIM J S, et al. Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.)[J]. Horticulture, Environment, and Biotechnology, 2014, 55(6): 548-556.
|
[40] |
王夏, 孙菲菲, 郦月红, 等. 萝卜抽薹开花相关基因的研究进展[J]. 金陵科技学院学报, 2014, 30(3):68-71.
|
[41] |
SCHRANZ M E, QUIJADA P, SUNG S B, et al. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa[J]. Genetics, 2002, 162(3): 1457-1468.
|
[42] |
原玉香, 孙日飞, 张晓伟, 等. 芸薹种作物抽薹相关基因BrFLC1的CAPS标记[J]. 园艺学报, 2008, 35(11):1635-1640.
|
[43] |
KITAMOTO N, YUI S, NISHIKAWA K, et al. A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting[J]. Euphytica, 2014, 196(2): 213-223.
|
[44] |
张宇航, 刘同坤, 黄菲艺, 等. 拟南芥中过表达不结球白菜BcFLC2调控花发育的分子机制[J]. 分子植物育种, 2022, 20(10):3133-3144.
|
[45] |
LI Q F, PENG A, YANG J Q, et al. A 215-bp indel at intron I of BoFLC2 affects flowering time in Brassica oleracea var. capitata during vernalization[J]. Theoretical and Applied Genetics, 2022, 135(8): 2785-2797.
|
[46] |
XU Y Y, WANG J, NIE S S, et al. Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)[J]. Journal of Integrative Agriculture, 2016, 15(4): 763-774.
|
[47] |
安光辉. LsSAW1调控生菜结球及叶背腹性的遗传和分子机理[D]. 武汉: 华中农业大学, 2022.
|
[48] |
KOBAYASHI Y, KAYA H, GOTO K, et al. A pair of related genes with antagonistic roles in mediating flowering signals[J]. Science, 1999, 286(5446): 1960-1962.
|
[49] |
JUNG W Y, LEE A, MOON J S, et al. Genome-wide identification of flowering time genes associated with vernalization and the regulatory flowering networks in Chinese cabbage[J]. Plant Biotechnology Reports, 2018, 12(5): 347-363.
|
[50] |
YAMAGUCHI A, KOBAYASHI Y, GOTO K, et al. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT[J]. Plant and Cell Physiology, 2005, 46(8): 1175-1189.
|
[51] |
王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理[J]. 植物生理学报, 2022, 58(1):77-90.
|
[52] |
MATHIEU J, YANT L J, MÜRDTER F, et al. Repression of flowering by the miR172 target SMZ[J]. PLoS Biology, 2009, 7(7): e1000148.
|
[53] |
李永光, 任辉, 张英杰, 等. 十字花科植物PEBP基因家族的分子进化[J]. 生物多样性, 2022, 30(6):160-170.
|
[54] |
XIAO D, ZHAO J J, HOU X L, et al. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks[J]. Journal of Experimental Botany, 2013, 64(14): 4503-4516.
|
[55] |
VOLLRATH P, CHAWLA H S, SCHIESSL S V, et al. A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape[J]. Theoretical and Applied Genetics, 2021, 134(4): 1217-1231.
|
[56] |
伍昱柯, 刘溶荣, 王克, 等. 植物LFY基因家族的进化分析[J/OL]. 分子植物育种, 2023:1-19.( 2023-04-13). https://kns.cnki.net/kcms/detail/46.1068.S.20230412.1440.011.html.
|
[57] |
CHAHTANE H, ZHANG B, NORBERG M, et al. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis[J]. New Phytologist, 2018, 220(2): 579-592.
|
[58] |
GHORBANI MARGHASHI M, BAGHERI H, GHOLAMI M. Genome-wide study of flowering-related MADS-box genes family in Cardamine hirsuta[J]. 3 Biotech, 2020, 10(12): 518.
|
[59] |
LEE J, OH M, PARK H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY[J]. The Plant Journal, 2008, 55(5): 832-843.
|
[60] |
LIU C, CHEN H Y, ER H L, et al. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis[J]. Development, 2008, 135(8): 1481-1491.
|
[61] |
NIE S S, LI C, XU L, et al. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering[J]. BMC Genomics, 2016,17: 389.
|
[62] |
赖佳, 韦树谷, 黄玲, 等. 白菜类蔬菜种质资源抽薹性状鉴定评价[J]. 中国农学通报, 2022, 38(28):41-47.
|
[63] |
饶立兵, 胡齐赞, 余小林, 等. 大白菜抽薹性状相关SSR分子标记的筛选[J]. 分子植物育种, 2015, 13(8):1786-1793.
|
[64] |
张梦璐, 张红, 黄志银, 等. 大白菜核心种质资源抽薹性的高效鉴定评价方法[J/OL]. 分子植物育种, 2023: 1-14. ( 2023-04-26). https://kns.cnki.net/kcms/detail/46.1068.S.20230426.1313.010.html.
|
[65] |
乌兰, 王超. 结球甘蓝迟抽薹基因RAPD标记转SCAR标记[J]. 分子植物育种, 2010, 8(2):307-311.
|
[66] |
李江丽, 王超, 张晓烜, 等. 结球甘蓝(Brassica oleracea var. capitata)迟抽薹基因SCAR标记转CAPS标记[J]. 分子植物育种, 2020, 18(5):1529-1534.
|
[67] |
赵丽萍. 萝卜抽薹性遗传分析与春萝卜种质标记鉴定[D]. 南京: 南京农业大学, 2007.
|
[68] |
刘哲, 许园园, 苏小俊. 萝卜抽薹相关SRAP分子标记筛选与分析[J]. 江苏农业科学, 2016, 44(8):74-76.
|
[69] |
徐文玲, 王淑芬, 牟晋华, 等. 萝卜抽薹基因连锁的AFLP和SCAR分子标记鉴定[J]. 分子植物育种, 2009, 7(4):743-749.
|