[1] |
国家药典委员会. 中华人民共和国药典-四部: 2020年版[M]. 北京: 中国医药科技出版社, 2020.
|
[2] |
GUAN L J, DING L S, LI Y M, et al. A new Homo-aro-cholestane glycoside from the rhizome of Paris Polyphylla var. chinensis[J]. Journal of Asian Natural Products Research, 2021, 23(11): 1107-1114.
|
[3] |
郝长琦. 重楼组织培养及甾体皂苷生物合成关键OSC酶鉴定[D]. 哈尔滨: 东北林业大学, 2021.
|
[4] |
GUO S Y, YIN Y, LEI T, et al. A cycloartenol synthase from the steroidal saponin biosynthesis pathway of Paris polyphylla[J]. Journal of Asian Natural Products Research, 2021, 23(4): 353-362.
|
[5] |
廖荣俊, 杨阳, 叶碧欢, 等. 多花黄精根茎的转录组分析与甾体皂苷生物合成相关基因发掘[J]. 中国中药杂志, 2020, 45(7): 1648-1656.
|
[6] |
徐永艳. 滇重楼种源筛选与皂苷合成及相关基因鉴别[D]. 北京: 中国林业科学研究院, 2019.
|
[7] |
王艳芳, 李戈, 唐玲, 等. 滇重楼花药开闭运动的影响因子及细胞形态学调控机制探讨[J]. 中国中药杂志, 2017, 42(10): 1860-1864.
|
[8] |
朱春权, 魏倩倩, 项兴佳, 等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
|
[9] |
李洁, 胡本祥, 彭亮, 等. 水杨酸和茉莉酸甲酯对远志愈伤组织生长和相关酶活性及化学成分的影响[J]. 中草药, 2019, 50(12): 2976-2982.
|
[10] |
姚诗琪, 曹洒, 侯帅红, 等. 外源性激素茉莉酸甲酯对鹅掌草中三萜皂苷flaccidosideⅡ含量积累作用的分析研究[J]. 湖北中医药大学学报, 2021, 23(5): 38-41.
|
[11] |
QIANG Q, GAO Y F, YU B Z, et al. Elevated CO2 enhances growth and differentially affects saponin content in Paris polyphylla var. Yunnanensis[J]. Industrial Crops and Products, 2020, 147: 112124.
|
[12] |
RAOMAI S, KUMARIA S, KEHIE M, et al. Plantlet regeneration of Paris polyphylla Sm. via thin cell layer culture and enhancement of steroidal saponins in mini-rhizome cultures using elicitors[J]. Plant Growth Regulation, 2015, 75(1): 341-353.
|
[13] |
WANG Y Z, LI P. Effect of cultivation years on saponins in Paris polyphylla var. Yunnanensis using ultra-high liquid chromatography-tandem mass spectrometry and Fourier transform infrared spectroscopy[J]. Plant Growth Regulation, 2018, 84(2): 373-381.
|
[14] |
GAO X Y, ZHANG X, CHEN W, et al. Transcriptome analysis of Paris polyphylla var. Yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves[J]. Phytochemistry, 2020, 178: 112460.
|
[15] |
胡正平, 徐娇, 周涛, 等. 茉莉酸甲酯对川续断根中川续断皂苷Ⅵ合成积累的影响[J]. 药学学报, 2021, 56(8): 2302-2307.
|
[16] |
GIL-MUÑOZ R, GIMÉNEZ-BAÑÓN M J, MORENO-OLIVARES J D, et al. Effect of methyl jasmonate doped nanoparticles on nitrogen composition of monastrell grapes and wines[J]. Biomolecules, 2021, 11(11): 1631.
|
[17] |
李静宇, 孙铭阳, 徐世强, 等. 穿心莲茉莉酸甲酯及非生物胁迫下Real-time PCR内参基因的筛选[J]. 中国实验方剂学杂志, 2022, 28(5): 133-140.
|
[18] |
KUROWSKA M M, DASZKOWSKA-GOLEC A, GAJECKA M, et al. Methyl jasmonate affects photosynthesis efficiency, expression of HvTIP genes and nitrogen homeostasis in barley[J]. International Journal of Molecular Sciences, 2020, 21(12): 4335.
|
[19] |
YUE X F, SHI P B, TANG Y L, et al. Effects of methyl jasmonate on the monoterpenes of Muscat Hamburg grapes and wine[J]. Journal of the Science of Food and Agriculture, 2021, 101(9): 3665-3675.
|
[20] |
黄开茹. 茉莉酸甲酯诱导马尾松基于树脂萜类的防御反应[D]. 南京: 南京林业大学, 2019.
|
[21] |
谭政委, 李磊, 杨红旗, 等. 茉莉酸甲酯诱导和不同花色红花中羟基红花黄色素A积累差异的机制分析[J]. 药学学报, 2020, 55(12): 2982-2988.
|
[22] |
HO T T, MURTHY H N, PARK S Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures[J]. International Journal of Molecular Sciences, 2020, 21(3): 716.
|
[23] |
WEI T, LI X, YASHIR N, et al. Effect of exogenous silicon and methyl jasmonate on the alleviation of cadmium-induced phytotoxicity in tomato plants[J]. Environmental Science and Pollution Research, 2021, 28(37): 51854-51864.
|
[24] |
LUO M L, ZHOU X, HAO Y, et al. Methyl jasmonate pretreatment improves aroma quality of cold-stored ‘Nanguo’pears by promoting ester biosynthesis[J]. Food Chemistry, 2021, 338: 127846.
|
[25] |
SUN W J, ZHAN J Y, ZHENG T R, et al. The jasmonate-responsive transcription factor CbWRKY24 regulates terpenoid biosynthetic genes to promote saponin biosynthesis in Conyza blinii H. LÉv[J]. Journal of Genetics, 2018, 97(5): 1379-1388.
|
[26] |
焦骄. 黄芪毛状根培养体系的优化及其主要活性成分生物合成的诱导调控研究[D]. 哈尔滨: 东北林业大学, 2016.
|
[27] |
孙国庆, 刘建雨, 吴发明, 等. 逆境胁迫下红花CYP450s基因的表达与幼叶总黄酮含量的相关性分析[J]. 中草药, 2022, 53(1): 222-230.
|
[28] |
GONZÁLEZ A, ESPINOZA D, VIDAL C, et al. Benzopyrene induces oxidative stress and increases expression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta)[J]. Planta, 2020, 252(6): 107.
|