[1] |
王琰, 童春富. 长江口芦苇和互花米草盐沼湿地蟹类洞穴分布特征及主要影响因子[J]. 生态学报, 2017, 37(16):5504-5513.
|
[2] |
MOKHTARI M, ABD GHAFFAR M, USUP G, et al. Effects of fiddler crab burrows on sediment properties in the mangrove mudflats of Sungai sepang, Malaysia[J]. Biology, 2016, 5(1):7.
DOI
URL
|
[3] |
WANG J Q, ZHANG X D, JIANG L F, et al. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh[J]. Ecosystems, 2010, 13(4):586-599.
DOI
URL
|
[4] |
BOTTO F, IRIBARNE O, GUTIERREZ J, et al. Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus[J]. Marine Ecology Progress Series, 2006, 312:201-210.
DOI
URL
|
[5] |
BOTTO F, VALIELA I, IRIBARNE O, et al. Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries[J]. Marine Ecology Progress Series, 2005, 293:155-164.
DOI
URL
|
[6] |
FANJUL E, ESCAPA M, MONTEMAYOR D, et al. Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments[J]. Journal of Sea Research, 2015, 95:206-216.
DOI
URL
|
[7] |
NATÁLIO L F, PARDO J C F, MACHADO G B O, et al. Potential effect of fiddler crabs on organic matter distribution: a combined laboratory and field experimental approach[J]. Estuarine, Coastal and Shelf Science, 2017, 184:158-165.
DOI
URL
|
[8] |
陈淑云. 螃蟹对闽江河口互花米草湿地土壤理化性质、温室气体排放与枯落物分解影响[D]. 福州: 福建师范大学, 2016.
|
[9] |
苏玉萍, 李赫龙, 钟燕平, 等. 不同形态磷对沉积物-水界面浮游植物增殖及群落结构演替的影响[J]. 环境科学学报, 2017, 37(5):1641-1648.
|
[10] |
邹兴红, 吴永波, 朱晓成, 等. 基于高光谱反射率的江苏大丰麋鹿国家级自然保护区水体营养状态评价[J]. 湿地科学, 2020, 18(2):219-227.
|
[11] |
熊李虎, 陆健健. 长江河口湿地不同植被中无齿螳臂相手蟹的分布及其洞穴利用[J]. 动物学杂志, 2009, 44(6):1-9.
|
[12] |
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11):961-968.
DOI
URL
|
[13] |
VAN NEDERVELDE F, CANNICCI S, KOEDAM N, et al. What regulates crab predation on mangrove propagules?[J]. Acta Oecologica, 2015, 63:63-70.
DOI
URL
|
[14] |
CHEN G C, TAM N F Y, YE Y. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China[J]. Science of the Total Environment, 2010, 408(13):2761-2767.
DOI
URL
|
[15] |
张元, 童春富. 长江口盐沼湿地无齿螳臂相手蟹(Chiromantes dehaani)胃含物特征与取食偏好[J]. 生态学杂志, 2018, 37(7):2059-2066.
|
[16] |
夏志坚, 白军红, 贾佳, 等. 黄河三角洲芦苇盐沼土壤碳、氮含量和储量的垂直分布特征[J]. 湿地科学, 2015, 13(6):702-707.
|
[17] |
FANJUL E, GRELA M A, IRIBARNE O. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution[J]. Marine Ecology Progress Series, 2007, 341:177-190.
DOI
URL
|
[18] |
聂立凯. 日本大眼蟹与双齿围沙蚕的生物扰动对河口湿地生源要素动态的影响[D]. 青岛: 青岛大学, 2020.
|
[19] |
李翔. 奉贤滨海湿地蟹类洞穴时空分布特征及蟹类扰动效应研究[D]. 上海: 华东师范大学, 2020.
|
[20] |
苗萍, 谢文霞, 于德爽, 等. 胶州湾互花米草湿地氮、磷元素的垂直分布及季节变化[J]. 应用生态学报, 2017, 28(5):1533-1540.
|
[21] |
金宝石, 高灯州, 杨平, 等. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化[J]. 自然资源学报, 2016, 31(4):608-619.
|
[22] |
王维奇, 王纯, 仝川, 等. 闽江河口区盐—淡水梯度下芦苇沼泽土壤有机碳特征[J]. 湿地科学, 2012, 10(2):164-169.
|
[23] |
仲崇庆, 王进欣, 邢伟, 等. 不同植被和水文条件下苏北盐沼土壤TN、TP和OM剖面特征[J]. 北京林业大学学报, 2010, 32(3):186-190.
|
[24] |
夏雯雯. 互花米草生态入侵过程中土壤因子的变化特征[D]. 南京: 南京大学, 2020.
|
[25] |
LUO M, HUANG J F, ZHU W F, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review[J]. Hydrobiologia, 2019, 827(1):31-49.
DOI
URL
|