浙江农业科学 ›› 2023, Vol. 64 ›› Issue (5): 1236-1241.DOI: 10.16178/j.issn.0528-9017.20220975
杨月1(), 程远2, 阮美颖2, 王荣青2, 叶青静2, 姚祝平2, 周国治2, 万红建2,*(
)
收稿日期:
2022-09-16
出版日期:
2023-05-11
发布日期:
2023-05-08
通讯作者:
万红建(1980—),江苏涟水人,副研究员,博士,研究方向为蔬菜遗传育种,E-mail: wanhongjian@sina.com。
作者简介:
杨月(1997—),女,河南信阳人,硕士,研究方向为蔬菜遗传育种,E-mail:yyue97@sina.com。
基金资助:
Received:
2022-09-16
Online:
2023-05-11
Published:
2023-05-08
摘要:
蔗糖转化酶抑制蛋白(invertase inhibitor, INH)是一类存在于细胞壁或液泡中的小分子蛋白家族,主要在翻译后抑制酸性蔗糖转化酶的活性。研究发现,通过调控蔗糖转化酶抑制蛋白在植物体内的表达,从而使其在不同植物组织器官发挥不同的作用。例如:根系防卫、叶片生长、种子萌发和果实保鲜等。此外,蔗糖转化酶抑制蛋白在抑制马铃薯低温糖化、参与植物胁迫防御、调控叶片衰老和种子发育等重要生理功能中具有重要的作用。本综述主要总结了植物蔗糖转化酶抑制蛋白的分类、结构特征和生理功能等。
中图分类号:
杨月, 程远, 阮美颖, 王荣青, 叶青静, 姚祝平, 周国治, 万红建. 蔗糖转化酶抑制蛋白研究进展[J]. 浙江农业科学, 2023, 64(5): 1236-1241.
[1] | 茹磊, 王丽岩, 王超, 等. 蔗糖转化酶活性调控的研究进展[J]. 渤海大学学报(自然科学版), 2020, 41(3): 211-218. |
[2] | 雷钰欣, 曹子千, 李纪璇, 等. 高等植物转化酶的研究进展[J/OL]. 分子植物育种, 2021: 1-20. (2021-07-08). . |
[3] | 俞锞, 李志邈, 万红建, 等. 高等植物蔗糖转化酶功能的研究进展[J]. 安徽农业科学, 2013, 41(33): 12815-12818, 12822. |
[4] |
STURM A. Invertases. primary structures, functions, and roles in plant development and sucrose partitioning[J]. Plant Physiology, 1999, 121(1): 1-8.
DOI PMID |
[5] | 牛俊奇, 苗小荣, 苏建睦, 等. 转化酶抑制子对转化酶抑制机理的研究进展[J]. 分子植物育种, 2018, 16(22): 7535-7540. |
[6] | 王连军. 高等植物中蔗糖转化酶的研究进展[J]. 安徽农业科学, 2014, 42(24): 8108-8111. |
[7] | 李阳阳. 叶面喷施5-氨基乙酰丙酸对葡萄光合作用及蔗糖转化酶基因表达的影响[D]. 杨凌: 西北农林科技大学, 2018. |
[8] |
JI X M, VAN DEN ENDE W, VAN LAERE A, et al. Structure, evolution, and expression of the two invertase gene families of rice[J]. Journal of Molecular Evolution, 2005, 60(5): 615-634.
DOI PMID |
[9] |
RAUSCH T, GREINER S. Plant protein inhibitors of invertases[J]. Biochimica et Biophysica Acta, 2004, 1696(2):253-261.
DOI PMID |
[10] |
JIN Y, NI D, RUAN Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level[J]. The Plant Cell, 2009, 21(7): 2072-2089.
DOI URL |
[11] |
SCOGNAMIGLIO M A, CIARDIELLO M A, TAMBURRINI M, et al. The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor[J]. Journal of Protein Chemistry, 2003, 22(4): 363-369.
DOI PMID |
[12] |
LIU X, CHENG S, LIU J, et al. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity[J]. Postharvest Biology and Technology, 2013, 86: 265-271.
DOI URL |
[13] |
GREINER S, RAUSCH T, SONNEWALD U, et al. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers[J]. Nature Biotechnology, 1999, 17(7): 708-711.
DOI PMID |
[14] |
GREINER S, KRAUSGRILL S, RAUSCH T. Cloning of a tobacco apoplasmic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development[J]. Plant Physiology, 1998, 116(2): 733-742.
PMID |
[15] |
MICHAEL, D'ANGELO I, JOSÉ ANTONIO MÁRQUEZ, et al. The invertase inhibitor nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension[J]. Journal of Molecular Biology, 2004, 335(4): 987-995.
PMID |
[16] | 成善汉, 柳俊, 谢从华, 等. 植物转化酶抑制子及其分子生物学的研究进展[J]. 海南大学学报(自然科学版), 2007, 25(1): 83-87, 95. |
[17] |
LINK M, RAUSCH T, GREINER S. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles[J]. FEBS Letters, 2004, 573(1/2/3): 105-109.
DOI URL |
[18] |
PRESSEY R. Invertase inhibitor in tomato fruit[J]. Phytochemistry, 1994, 36(3): 543-546.
DOI URL |
[19] |
GREINER S, KÖSTER U, LAUER K, et al. Plant invertase inhibitors: expression in cell culture and during plant development[J]. Functional Plant Biology, 2000, 27(9): 807.
DOI URL |
[20] |
HOTHORN M, WOLF S, ALOY P, et al. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins[J]. The Plant Cell, 2004, 16(12): 3437-3447.
DOI URL |
[21] | 安道昌. 植物生殖器官发育中的基因调控[J]. 高技术通讯, 1993, 3(6): 32-35. |
[22] | 王文胜. 论植物根在土壤中的发育和功能[J]. 科技创新与应用, 2015(20): 286. |
[23] | 苏涛, 周怀烨, 周碧瑶, 等. 杨树根特异性表达β-果糖苷酶抑制子的功能性验证[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 169-174. |
[24] | 叶雪凌, 刘志勇, 周宝利. 野生茄转化酶抑制子基因StINH1的克隆与序列分析[J]. 西北农业学报, 2013, 22(8):162-167. |
[25] | 佟屏亚. 中国马铃薯栽培史[J]. 中国科技史料, 1990, 11(1): 10-19. |
[26] |
HAJIREZAEI M R, BÖRNKE F, PEISKER M, et al. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum)[J]. Journal of Experimental Botany, 2003, 54(382): 477-488.
DOI URL |
[27] |
ZRENNER R, SCHÜLER K, SONNEWALD U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers[J]. Planta, 1996, 198(2): 246-252.
DOI PMID |
[28] | 成善汉, 谢从华, 柳俊, 等. 马铃薯低温启动子CIP的克隆及其功能鉴定[J]. 贵州科学, 2008, 26(1): 19-23. |
[29] |
SAGAR S, MIRIKAR D, RAVIKUMAR A. Sequence diversity and in silico structure prediction of the vacuolar invertase inhibitor gene from potato (Solanum tuberosum L.) cultivars differing in sugar content[J]. Food Chemistry, 2019, 295: 403-411.
DOI URL |
[30] |
苗小荣, 牛俊奇, 莫昭展, 等. 铁皮石斛转化酶抑制子家族基因的克隆和表达分析[J]. 生物技术通报, 2018, 34(1): 129-136.
DOI |
[31] |
SHIVALINGAMURTHY S G, ANANGI R, KALAIPANDIAN S, et al. Identification and functional characterization of sugarcane invertase inhibitor (ShINH 1): a potential candidate for reducing pre-and post-harvest loss of sucrose in sugarcane[J]. Frontiers in Plant Science, 2018, 9:598.
DOI URL |
[32] | 严松, 严长杰, 顾铭洪. 植物叶发育的分子机理[J]. 遗传, 2008, 30(9): 1127-1135. |
[33] |
TANG X, SU T, HAN M, et al. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max)[J]. Journal of Experimental Botany, 2017, 68(3): 469-482.
DOI PMID |
[34] |
SU T, WOLF S, HAN M, et al. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth[J]. Plant Molecular Biology, 2016, 90(1): 137-155.
DOI URL |
[35] |
VU D P, MARTINS RODRIGUES C, JUNG B, et al. Vacuolar sucrose homeostasis is critical for plant development, seed properties, and night-time survival in Arabidopsis[J]. Journal of Experimental Botany, 2020, 71(16): 4930-4943.
DOI URL |
[36] |
WELLMER F, RIECHMANN J L. Gene networks controlling the initiation of flower development[J]. Trends in Genetics, 2010, 26(12): 519-527.
DOI PMID |
[37] |
HALABA J, RUDNICKI R M. Invertase inhibitor-control of sucrose transport from carnation petals to other flower parts[J]. Plant Growth Regulation, 1988, 7(3): 193-199.
DOI |
[38] |
RECA I B, BRUTUS A, D'Avino R, et al. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase[J]. Biochimie, 2008, 90(11/12): 1611-1623.
DOI URL |
[39] | 孙闽子, 张珅, 吴光斌, 等. 采前调节剂处理对采后果实保鲜效应的研究进展[J]. 果树学报, 2022, 39(6): 1111-1120. |
[40] | 张义, 刘云利, 刘子森, 等. 植物生长调节剂的研究及应用进展[J]. 水生生物学报, 2021, 45(3): 700-708. |
[41] |
MA M, WANG LB, ZHANG S L, et al. Acid vacuolar invertase 1 (PbrAc-Inv 1) and invertase inhibitor 5 (PbrII 5) were involved in sucrose hydrolysis during postharvest pear storage[J]. Food Chemistry, 2020, 320: 126635.
DOI URL |
[42] |
AKIHIRO I, RYUSUKE H, HIROKI I, et al. Effects of storage temperature on fruit quality and expression of sucrose phosphate synthase and acid invertase genes in Japanese pear[J]. The Horticulture Journal, 2015, 84(3): 227-232.
DOI URL |
[43] |
ZHANG N, JIANG J, YANG Y L, et al. Functional characterization of an invertase inhibitor gene involved in sucrose metabolism in tomato fruit[J]. Journal of Zhejiang University-SCIENCE B, 2015, 16(10): 845-856.
DOI PMID |
[44] |
QIN G Z, ZHU Z, WANG W H, et al. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology, 2016, 172(3):1596-1611.
PMID |
[45] |
RAJJOU L, DUVAL M, GALLARDO K, et al. Seed germination and vigor[J]. Annual Review of Plant Biology, 2012, 63:507-533.
DOI PMID |
[46] |
CHOUREY P S, JAIN M, LI Q B, et al. Genetic control of cell wall invertases in developing endosperm of maize[J]. Planta, 2006, 223(2): 159-167.
DOI PMID |
[47] |
LI B, LIU H, ZHANG Y, et al. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize[J]. Plant Biotechnology Journal, 2013, 11(9): 1080-1091.
DOI PMID |
[48] |
WANG L, RUAN Y L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton[J]. Plant Physiology, 2012, 160(2): 777-787.
DOI PMID |
[49] |
ZHANG J Q, WU Z C, HU F C, et al. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes[J]. Horticulture Research, 2018, 5: 39.
DOI |
[50] |
HOFFMANN T, SHI X L, HSU C Y, et al. The identification of type I MADS box genes as the upstream activators of an endosperm-specific invertase inhibitor in Arabidopsis[J]. BMC Plant Biology, 2022, 22(1): 18.
DOI PMID |
[51] | 成善汉, 宋波涛, 谢从华, 等. 烟草液泡转化酶抑制子基因调控马铃薯块茎低温还原糖累积的研究[J]. 中国农业科学, 2007, 40(1): 140-146. |
[52] | 牛俊奇, 黄静丽, 张琨琨, 等. 甘蔗转化酶抑制子(SoInvInh 1)基因克隆和表达分析[J]. 中国农业大学学报, 2015, 20(3): 38-45. |
[53] |
DATIR S S, LATIMER J M, THOMSON S J, et al. Allele diversity for the apoplastic invertase inhibitor gene from potato[J]. Molecular Genetics and Genomics, 2012, 287(6): 451-460.
DOI PMID |
[54] | JIANG N, YU P H, FU W M, et al. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets[J]. Plant, Cell & Environment, 2020, 43(5): 1273-1287. |
[55] |
ZHU C L, YANG K B, LI G Z, et al. Identification and expression analyses of invertase genes in moso bamboo reveal their potential drought stress functions[J]. Frontiers in Genetics, 2021, 12: 696300.
DOI URL |
[56] |
XU X X, HU Q, YANG W N, et al. The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato[J]. BMC Plant Biology, 2017, 17(1): 195.
DOI URL |
[57] |
BONFIG K B, GABLER A, SIMON U K, et al. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response[J]. Molecular Plant, 2010, 3(6): 1037-1048.
DOI PMID |
[58] |
SIEMENS J, GONZÁLEZ M C, WOLF S, et al. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2011, 12(3): 247-262.
DOI URL |
[59] |
ZUMA B, DANA M B, WANG D F. Prolonged expression of a putative invertase inhibitor in micropylar endosperm suppressed embryo growth in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 61.
DOI URL |
[1] | 孟祥谦, 邹宗峰, 曲诚怀, 王双磊, 缪玉刚. 不同植物生长调节剂对苹果新梢及叶片生长的调控效果[J]. 浙江农业科学, 2023, 64(6): 1515-1518. |
[2] | 刘慧, 蓝明明, 邢蕾蕾. 鞭毛主调控因子flhDC调控机制及其在PGPR定殖中的功能[J]. 浙江农业科学, 2023, 64(10): 2575-2582. |
[3] | 沈煜潮, 郑许松, 徐红星, 吕仲贤. 稻田养鸭和食诱剂对稻纵卷叶螟的协同控制作用[J]. 浙江农业科学, 2022, 63(8): 1805-1808. |
[4] | 方文英, 陈佳麒, 沈兴连, 莫红华, 刘海威, 纪国成. 氮肥调控运筹实现甬优12超15 t·hm-2的性状特征与技术途径[J]. 浙江农业科学, 2022, 63(6): 1218-1222. |
[5] | 郑铭洁, 余红伟, 陈志良, 章明奎. 浙西丘陵区柑橘园土壤健康状况及管理对策[J]. 浙江农业科学, 2022, 63(2): 324-329. |
[6] | 赵靖泽, 杨红春. 多梳蛋白复合体PRC2调控水稻发育的研究进展[J]. 浙江农业科学, 2022, 63(10): 2252-2257. |
[7] | 徐嘉礼, 罗春晖, 吴海波, 姜坤, 郑彬. 不同治理措施在绍兴受镉污染水稻田的应用效果[J]. 浙江农业科学, 2021, 62(9): 1682-1685. |
[8] | 张来明, 吕萍. 肥水调控对切花百合养分含量及农艺品质的影响[J]. 浙江农业科学, 2021, 62(4): 741-744. |
[9] | 王军英, 胥明. 高温季节温度调控对红掌种苗生长的影响[J]. 浙江农业科学, 2020, 61(7): 1361-1363. |
[10] | 周婧, 姚宏, 周斌雄, 钟方翼, 杨淼. 皇菊花期调控试验[J]. 浙江农业科学, 2020, 61(3): 546-548. |
[11] | 陶云彬, 杨佳佳, 章日亮, 章哲. 有机肥替代、化肥养分调控对土壤理化性状、枇杷果实品质和产量的影响[J]. 浙江农业科学, 2019, 60(9): 1540-1541. |
[12] | 周江明, 姜正孝, 吴慧平. 撒施石灰对稻田及水稻重金属积累的影响[J]. 浙江农业科学, 2019, 60(6): 991-996. |
[13] | 戴杨鑫, 冯晓宇, 王宇希, 戴瑜来, 黄辉, 马恒甲. 基于生物絮团原理的水质调控技术在三角鲂保种池塘中的应用[J]. 浙江农业科学, 2019, 60(2): 290-293. |
[14] | 张来明, 吕萍. 夜温调控对高山越夏蝴蝶兰催花效果及经济效益的影响[J]. 浙江农业科学, 2018, 59(6): 922-923. |
[15] | 赵婉秋, 陈黎, 沈军达, 卢立志. 动物季节性繁殖机制研究进展[J]. 浙江农业科学, 2017, 58(1): 150-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||