[1] |
LI D L, DU L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish[J]. Artificial Intelligence Review, 2022, 55(5): 4077-4116.
|
[2] |
农业农村部渔业渔政管理局. 中国渔业统计年鉴2021[M]. 北京: 中国农业出版社, 2021.
|
[3] |
刘永新, 邵长伟, 侯吉伦, 等. 中国水产育种研究现状与发展建议[J]. 水产学报, 2023, 47(1): 56-69.
|
[4] |
李道亮. 无人渔场引领农业智能化[J]. 机器人产业, 2020(4): 46-51.
|
[5] |
石韵. 饲料系数及价格对水产养殖经济的影响[J]. 中国饲料, 2020(8): 84-87.
|
[6] |
朱明, 张镇府, 黄凰, 等. 鱼类养殖智能投喂方法研究进展[J]. 农业工程学报, 2022, 38(7): 38-47.
|
[7] |
张继业, 胡福良, 郑琴, 等. 一种水陆两用自动投饵机设计与试验研究[J]. 中国水产, 2017(9): 78-81.
|
[8] |
周晓林. 微型定量自动投饵机的设计[J]. 渔业现代化, 2012, 39(2): 69-72.
|
[9] |
郑金存, 赵峰, 林勇, 等. 基于近红外深度图的游泳型鱼类摄食强度实时测量[J]. 上海海洋大学学报, 2021, 30(6): 1067-1078.
|
[10] |
HAO P Y, WANG L, ZHAN Y L, et al. Using moderate-resolution temporal NDVI profiles for high-resolution crop mapping in years of absent ground reference data: a case study of Bole and manas counties in Xinjiang, China[J]. ISPRS International Journal of Geo-Information, 2016, 5(5): 67.
|
[11] |
FØRE M, ALVER M, ALFREDSEN J A, et al. Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L.) in commercial-size aquaculture net pens: model details and validation through full-scale experiments[J]. Aquaculture, 2016, 464: 268-278.
|
[12] |
ZHOU C, LIN K, XU D M, et al. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture[J]. Computers and Electronics in Agriculture, 2018, 146: 114-124.
|
[13] |
HU J, ZHAO D D, ZHANG Y F, et al. Real-time nondestructive fish behavior detecting in mixed polyculture system using deep-learning and low-cost devices[J]. Expert Systems With Applications, 2021, 178: 115051.
|
[14] |
WU T H, HUANG Y I, CHEN J M. Development of an adaptive neural-based fuzzy inference system for feeding decision-making assessment in silver perch (Bidyanus bidyanus) culture[J]. Aquacultural Engineering, 2015, 66: 41-51.
|