[1] |
WELSH S L, ANDERSON D E. Metaplexis japonica: an oriental milkweed from an Iowa cornfield[J]. Brittonia, 1962, 14(2): 186-188.
|
[2] |
WANG D C, SUN S H, SHI L N, et al. Chemical composition, antibacterial and antioxidant activity of the essential oils of Metaplexis japonica and their antibacterial components[J]. International Journal of Food Science & Technology, 2015, 50(2): 449-457.
|
[3] |
YANG M H, WU J, XU X D, et al. A new lignan from the Jian-er syrup and its content determination by RP-HPLC[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(2): 662-666.
|
[4] |
WANG Z Q, WANG D F, WANG M R, et al. Metaplexis japonica seed hair fiber: a member of natural hollow fibers and its characterization[J]. Textile Research Journal, 2019, 89(21/22): 4363-4372.
|
[5] |
贾琳, 郭斌. 萝藦多糖粗提物对免疫抑制小鼠免疫器官及淋巴细胞增值影响的初步研究[J]. 辽宁医学院学报, 2011, 32(5): 400-402, 412.
|
[6] |
ZHANG J, CHEN J J, LIANG Z Z, et al. New lignans and their biological activities[J]. Chemistry & Biodiversity, 2014, 11(1): 1-54.
|
[7] |
WEI L L, YANG M, HUANG L, et al. Antibacterial and antioxidant flavonoid derivatives from the fruits of Metaplexis japonica[J]. Food Chemistry, 2019, 289: 308-312.
|
[8] |
YAO H L, LIU Y, LIU X H, et al. Metajapogenins A-C, pregnane steroids from shells of Metaplexis japonica[J]. Molecules, 2017, 22(4): 646.
|
[9] |
YU F J, SADI M S, LI Z F, et al. The Metaplexis japonica fiber as a potential absorbent for removal of oils and organic solvents[J]. The Journal of the Textile Institute, 2020, 111(8): 1206-1213.
|
[10] |
WANG Z Q, WANG D F, LI Z G, et al. Metaplexis japonica seed hair fiber: a hydrophobic natural fiber with robust oil-water separation properties[J]. Cellulose, 2020, 27(5): 2427-2435.
|
[11] |
WANG D F, WANG Z Q, ZHENG X H, et al. Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: novel efficient adsorbent for methylene blue[J]. Industrial Crops and Products, 2020, 148: 112319.
|
[12] |
BAUER J, CHEN K H, HILTBUNNER A, et al. The major protein import receptor of plastids is essential for chloroplast biogenesis[J]. Nature, 2000, 403(6766): 203-207.
|
[13] |
NEUHAUS H E, EMES M J. Nonphotosynthetic metabolism in plastids[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 111-140.
|
[14] |
ASAF S, KHAN A L, AAQIL KHAN M, et al. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species[J]. PLoS One, 2017, 12(8): e0182281.
|
[15] |
张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报, 2011, 33(4): 365-375.
|
[16] |
DOYLE J, DOYLE J L, DOYLE J, et al. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[R]. Phytochem Bull,1987.
|
[17] |
PATEL R K, JAIN M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2): e30619.
|
[18] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
|
[19] |
BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology, 2012, 19(5): 455-477.
|
[20] |
HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119.
|
[21] |
POTTER S C, LUCIANI A, EDDY S R, et al. HMMER web server: 2018 update[J]. Nucleic Acids Research, 2018, 46(W1): W200-W204.
|
[22] |
BUSCHIAZZO E, GEMMELL N J. The rise, fall and renaissance of microsatellites in eukaryotic genomes[J]. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2006, 28(10): 1040-1050.
|
[23] |
KELKAR Y D, TYEKUCHEVA S, CHIAROMONTE F, et al. The genome-wide determinants of human and chimpanzee microsatellite evolution[J]. Genome Research, 2008, 18(1): 30-38.
|
[24] |
BEIER S, THIEL T, MÜNCH T, et al. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585.
|
[25] |
DANIELL H, LIN C S, YU M, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering[J]. Genome Biology, 2016, 17(1): 134.
|
[26] |
章建红, 沈登锋, 洪春桃, 等. 盐胁迫对薄壳山核桃幼苗光合作用及叶绿体超微结构的影响[J]. 浙江农业科学, 2022, 63(11):2569-2574.
|
[27] |
JANSEN R K, RAUBESON L A, BOORE J L, et al. Methods for obtaining and analyzing whole chloroplast genome sequences[J] Methods in Enzymology, 2005, 395: 348-384.
|
[28] |
GUAN M, ZHANG R. The complete chloroplast genome of Biondia insignis Tsiang (Apocynaceae)[J]. Mitochondrial DNA Part B, 2019, 4(1): 280-281.
|
[29] |
RAO H, WANG X J, MA J X, et al. Characterization of the complete chloroplast genome of Biondia chinensis (Apocynaceae: Asclepiadoideae: Asclepiadeae), a rare and threatened liana endemic to China[J]. Mitochondrial DNA Part B, Resources, 2018, 3(2): 763-764.
|
[30] |
ZHANG J, ZHANG D Q. The complete chloroplast genome sequence of Cynanchum forrestii Schltr.(Asclepiadaceae) and its phylogenetic analysis[J]. Mitochondrial DNA Part B, Resources, 2019, 4(2): 3675-3676.
|
[31] |
ZHANG K, LIU L M, SHAN X F. Characterization of the complete chloroplast genome of Tabernaemontana divaricate (Apocynaceae), a valuable and endangered plant[J]. Mitochondrial DNA Part B, Resources, 2021, 6(11): 3125-3126.
|
[32] |
PARK H S, KIM K Y, KIM K, et al. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae)[J]. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2016, 27(5): 3747-3748.
|
[33] |
KANG P, GUO Y Q, ZHANG Y Y, et al. The complete chloroplast genome sequence of medicinal plant: Cynanchum thesioides (Asclepiadaceae)[J]. Mitochondrial DNA Part B, Resources, 2021, 6(9): 2592-2593.
|
[34] |
JR B C W. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(25): 11331-11338.
|
[35] |
洪霞, 陈孝赏, 王娇阳, 等. 芋种质叶绿体基因trnH-psbA序列特征及遗传多样性分析[J]. 浙江农业科学, 2021, 62(11):2274-2276,2280.
|
[36] |
BULLOCK A A. Indicis nominum familiarum angiospermarum prodromus[J]. TAXON, 1958, 7(1): 1-35.
|
[37] |
STRAUB S C K, MOORE M J, SOLTIS P S, et al. Phylogenetic signal detection from an ancient rapid radiation: effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae[J]. Molecular Phylogenetics and Evolution, 2014, 80: 169-185.
|
[38] |
FISHBEIN M, LIVSHULTZ T, STRAUB S C K, et al. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits[J]. American Journal of Botany, 2018, 105(3): 495-513.
|