[1] |
周正平, 占小登, 沈希宏, 等. 我国水稻育种发展现状、展望及对策[J]. 中国稻米, 2019, 25(5): 1-4.
|
[2] |
林建荣, 宋昕蔚, 吴明国, 等. 籼粳超级杂交稻育种技术创新与品种培育[J]. 中国农业科学, 2016, 49(2): 207-218.
|
[3] |
ZHANG X C, FU L B, TU Y S, et al. The influence of nitrogen application level on eating quality of the two indica-japonica hybrid rice cultivars[J]. Plants, 2020, 9(12): 1663.
|
[4] |
周翌城, 郭哈伦, 陆尧, 等. 胚乳蛋白质对稻米品质影响的研究进展[J]. 中国稻米, 2023, 29(1): 27-34, 43.
|
[5] |
SUI B, FENG X M, TIAN G L, et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors[J]. Field Crops Research, 2013, 150: 99-107.
|
[6] |
ZHU D W, ZHANG H C, GUO B W, et al. Effects of nitrogen level on yield and quality of japonica soft super rice[J]. Journal of Integrative Agriculture, 2017, 16(5): 1018-1027.
|
[7] |
胡明明, 兰艳, 彭立功, 等. 施氮量对巨胚水稻产量、品质及γ-氨基丁酸含量的影响[J]. 植物营养与肥料学报, 2022, 28(11): 1947-1963.
|
[8] |
程琴, 孔令汉, 王鹏, 等. 水稻粒型、粒重和灌浆研究进展[J]. 分子植物育种, 2023, 21(4): 1196-1205.
|
[9] |
王莹, 于亚辉, 阙补超, 等. 稻米粒形与主要品质性状的关系[J]. 辽宁农业科学, 2016(2): 40-42.
|
[10] |
HUANG S J, ZHAO C F, ZHU Z, et al. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments[J]. Journal of Integrative Agriculture, 2020, 19(4): 988-998.
|
[11] |
CHENG B, JIANG Y, CAO C G. Balance rice yield and eating quality by changing the traditional nitrogen management for sustainable production in China[J]. Journal of Cleaner Production, 2021, 312: 127793.
|
[12] |
BIAN J L, REN G L, HAN C, et al. Comparative analysis on grain quality and yield of different panicle weight indica-japonica hybrid rice (Oryza sativa L.) cultivars[J]. Journal of Integrative Agriculture, 2020, 19(4): 999-1009.
|
[13] |
陆丹丹, 雍明玲, 陶钰, 等. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应[J]. 中国水稻科学, 2022, 36(5): 520-530.
|
[14] |
蒋晶晶, 周天阳, 韦陈华, 等. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889.
|
[15] |
HUANG M, YANG C L, JI Q M, et al. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of Southern China[J]. Field Crops Research, 2013, 149: 187-192.
|
[16] |
HOU W F, KHAN M R, ZHANG J L, et al. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice[J]. Agriculture, Ecosystems & Environment, 2019, 269: 183-192.
|
[17] |
田颖, 于雪然, 杜怀东, 等. 水稻粒形基因的遗传研究进展[J]. 江苏农业科学, 2022, 50(21): 16-26.
|
[18] |
YANG J C, ZHANG J H. Grain-filling problem in ‘super’ rice[J]. Journal of Experimental Botany, 2010, 61(1): 1-5.
|
[19] |
NING H F, QIAO J F, LIU Z H, et al. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype[J]. Journal of Cereal Science, 2010, 52(1): 90-95.
|
[20] |
MATSUE Y, ODAHARA K, HIRAMATSU M. Differences in protein content, amylose content and palatability in relation to location of grains within rice panicle[J]. Japanese Journal of Crop Science, 1994, 63(2): 271-277.
|
[21] |
董明辉, 谢裕林, 乔中英, 等. 水稻不同粒位籽粒淀粉与蛋白质累积动态差异[J]. 中国水稻科学, 2011, 25(3): 297-306.
|
[22] |
MA Z H, CHENG H T, NITTA Y, et al. Differences in viscosity of superior and inferior spikelets of japonica rice with various percentages of apparent amylose content[J]. Journal of Agricultural and Food Chemistry, 2017, 65(21): 4237-4246.
|
[23] |
KAWAKATSU T, TAKAIWA F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains[J]. Plant Biotechnology Journal, 2010, 8(9): 939-953.
|