[1] |
施旭, 高松, 刘帅, 等. 基于人工智能技术的智慧烟草农业发展探究[J]. 浙江农业科学, 2024, 65(4): 942-948.
|
[2] |
穆龙涛, 高宗斌, 崔永杰, 等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019, 50(10): 24-34.
|
[3] |
高芳芳, 武振超, 索睿, 等. 基于深度学习与目标跟踪的苹果检测与视频计数方法[J]. 农业工程学报, 2021, 37(21):217-224.
|
[4] |
CHEN S M, XIONG J T, JIAO J M, et al. Citrus fruits maturity detection in natural environments based on convolutional neural networks and visual saliency map[J]. Precision Agriculture, 2022, 23(5): 1515-1531.
|
[5] |
蹇川, 郑永强, 刘艳梅, 等. 目标检测算法YOLOv5s用于柑橘成熟果实检测的改进[J]. 中国南方果树, 2024, 53(1):224-231.
|
[6] |
朱旭, 马淏, 姬江涛, 等. 基于Faster R-CNN的蓝莓冠层果实检测识别分析[J]. 南方农业学报, 2020, 51(6):1493-1501.
|
[7] |
LU S L, CHEN W K, ZHANG X, et al. Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation[J]. Computers and Electronics in Agriculture, 2022, 193: 106696.
|
[8] |
王立舒, 秦铭霞, 雷洁雅, 等. 基于改进YOLOv4-Tiny的蓝莓成熟度识别方法[J]. 农业工程学报, 2021, 37(18): 170-178.
|
[9] |
宁政通, 罗陆锋, 廖嘉欣, 等. 基于深度学习的葡萄果梗识别与最优采摘定位[J]. 农业工程学报, 2021, 37(9): 222-229.
|
[10] |
KUZNETSOVA A, MALEVA T, SOLOVIEV V. Using YOLOv3 algorithm with pre- and post-processing for apple detection in fruit-harvesting robot[J]. Agronomy, 2020, 10(7): 1016.
|
[11] |
张震, 周俊, 江自真, 等. 基于改进YOLO v7轻量化模型的自然果园环境下苹果识别方法[J]. 农业机械学报, 2024, 55(3): 231-242,262.
|
[12] |
王金鹏, 何萌, 甄乾广, 等. 基于改进COF-YOLO v8n的油茶果静态与动态检测计数方法[J]. 农业机械学报, 2024, 55(4): 193-203.
|
[13] |
岑霄. 融合空洞卷积和特征金字塔的Faster R-CNN柑橘害虫检测方法[J]. 中国农学通报, 2023, 39(22):158-164.
|
[14] |
SONG Z Z, ZHOU Z X, WANG W Q, et al. Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting[J]. Computers and Electronics in Agriculture, 2021, 181:105933.
|
[15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 779-788.
|
[16] |
刘芳. 基于YOLOV5的柑橘果实目标检测研究[J]. 信息与电脑(理论版), 2022, 34(2):152-154.
|
[17] |
CHOU Y C, KUO C-J, CHEN T T, et al. Deep-learning-based defective bean inspection with GAN-structured automated labeled data augmentation in coffee industry[J]. Applied Sciences, 2019, 9(19): 4166.
|
[18] |
YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27- November 2, 2019, Seoul, Korea. IEEE, 2019: 6022-6031.
|
[19] |
章倩丽, 李秋生, 胡俊勇, 等. 基于PP-YOLO改进算法的脐橙果实实时检测[J]. 北京联合大学学报, 2022, 36(4):58-66.
|
[20] |
黄彤镔, 黄河清, 李震, 等. 基于YOLOv5改进模型的柑橘果实识别方法[J]. 华中农业大学学报, 2022, 41(4):170-177.
|
[21] |
易诗, 李俊杰, 张鹏, 等. 基于特征递归融合YOLOv4网络模型的春见柑橘检测与计数[J]. 农业工程学报, 2021, 37(18):161-169.
|