[1] XU Z C, JI A J, ZHANG X, et al.Biosynthesis and regulation of active compounds in medicinal model plant Salvia miltiorrhiza[J]. Chinese Herbal Medicines, 2016, 8(1): 3-11. [2] 毛亚平, 马莹, 卜俊玲, 等. 丹参植株原位侵染RNAi毛状根体系的建立及其干扰效果[J]. 世界中医药, 2018, 13(2): 256-258, 263. [3] LI B, WANG B Q, LI H Y, et al.Establishment of Salvia castanea Diels F. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation[J]. Protoplasma, 2016, 253(1): 87-100. [4] 方誉民, 杨东风, 梁宗锁. 两种丹参毛状根对茉莉酸甲酯的差异响应[J]. 浙江理工大学学报(自然科学版), 2017, 37(5): 712-719. [5] 张夏楠, 郭娟, 申业, 等. 一个新的丹参3-羟基-3-甲基戊二酰辅酶A还原酶3基因的克隆及其表达分析[J]. 中国中药杂志, 2012, 37(16): 2378-2382. [6] YANG D F, MA P D, LIANG X, et al.Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea diel F. tomentosa stib[J]. PLoS One, 2012, 7(1): e29678. [7] YANG C Q, FANG X, WU X M, et al.Transcriptional regulation of plant secondary metabolism[J]. Journal of Integrative Plant Biology, 2012,54(10): 703-712. [8] 陈俊, 王宗阳. 植物MYB类转录因子研究进展[J]. 植物生理与分子生物学学报, 2002, 28(2): 81-88. [9] LUO X P, ZHAO H X, YAO P F, et al.An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from tartary buckwheat[J]. Journal of Plant Growth Regulation, 2018, 37(1): 76-84. [10] DEVAIAH B N, MADHUVANTHI R, KARTHIKEYAN A S, et al.Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis[J]. Molecular Plant, 2009, 2(1): 43-58. [11] LI C L, LU S F.Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza[J]. BMC Genomics, 2014, 15(1): 277. [12] BEDON F, BOMAL C, CARON S, et al.Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid-and flavonoid-oriented responses[J]. Journal of Experimental Botany, 2010, 61(14): 3847-3864. [13] GOODRICH J, CARPENTER R, COEN E S.A common gene regulates pigmentation pattern in diverse plant species[J]. Cell, 1992, 68(5): 955-964. [14] NAKATSUKA T, HARUTA K S, PITAKSUTHEEPONG C, et al.Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers[J]. Plant and Cell Physiology, 2008, 49(12): 1818-1829. [15] ZHANG H T, HEDHILI S, MONTIEL G, et al.The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus[J]. The Plant Journal, 2011, 67(1): 61-71. [16] YAMADA Y, KOKABU Y, CHAKI K, et al.Isoquinoline alkaloid biosynthesis is regulated by a unique bHLH-type transcription factor in Coptis japonica[J]. Plant and Cell Physiology, 2011, 52(7): 1131-1141. [17] 高珂, 王玲, 吴素瑞, 等. 调控药用植物药效成分合成的转录因子研究进展[J]. 中草药, 2015, 46(20): 3100-3108. [18] 陈媞颖, 刘娟, 袁媛, 等. 黄芩bHLH转录因子基因家族生物信息学及表达分析[J]. 中草药, 2018, 49(3): 671-677. [19] ZHOU Y Y, SUN W, CHEN J F, et al.SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Scientific Reports, 2016, 6: 22852. [20] 段童瑶,黄璐瑶,王磊,等. MYB转录因子在药用植物次生代谢领域的研究进展[EB/OL]. (2019-03-06)[2019-03-10]. http://kns.cnki.net/KCMS/detail/46.1068.S.20190305.0956.002.html?uid=WEEvREdxOWJ mbC9o M1NjYkZCbDdrdXQyYzlRUlpIMnJlUFh0WGtYbFNEQko=$R 1yZ0H6jyaa0en3RxVUd8df-oHi7XMMDo7mtKT6mSmEvTuk11 l2gFA!!&v=MDI5MzlLSUY4PUl6ZlJlYkc0SDlqTXJJOUFaT3 NQWXc5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZWJ1Wn BGeXZsVTc3. [21] PAZ-ARES J, GHOSAL D, WIENAND U, et al.The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J]. The EMBO Journal, 1987, 6(12): 3553-3558. [22] DING K, PEI T L, BAI Z Q, et al.SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots[J]. Scientific Reports, 2017, 7: 5104. [23] ZHANG S C, MA P D, YANG D F, et al.Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza[J]. PLoS One, 2013, 8(9): e73259. [24] 丁庆倩, 王小婷, 胡利琴, 等. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. [25] 舒志明, 梁宗锁, 刘建朝, 等. 丹参和藏丹参对UV-B辐射的响应差异[J]. 西北农业学报, 2016, 25(5): 738-743. [26] YANG D F, FANG Y M, XIA P G, et al.Diverse responses of tanshinone biosynthesis to biotic and abiotic elicitors in hairy root cultures of Salvia miltiorrhiza and Salvia castanea Diels f. tomentosa[J]. Gene, 2018, 643: 61-67. [27] FANG Y M, HOU Z N, ZHANG X D, et al.Diverse specialized metabolism and their responses to Lactalbumin hydrolysate in hairy root cultures of Salvia miltiorrhiza Bunge and Salvia castanea Diels F. t omentosa Stib[J]. Biochemical Engineering Journal, 2018, 131: 58-69. [28] AGARWAL T, GROTEWOLD E, DOSEFF A I, et al.MYB31/MYB42 syntelogs exhibit divergent regulation of phenylpropanoid genes in maize, sorghum and rice[J]. Scientific Reports, 2016, 6: 28502. [29] 刘林. 丹参对低磷胁迫的生理响应及基因SmMYB98b和SmMYB9a的功能研究[D]. 杨凌:西北农业科技大学,2018. [30] KADOMURA-ISHIKAWA Y, MIYAWAKI K, TAKAHASHI A, et al.Light and abscisic acid independently regulated FaMYB10 in Fragaria×ananassa fruit[J]. Planta, 2015, 241(4): 953-965. [31] XIONG Y Q, LIU T Y, TIAN C G, et al.Transcription factors in rice: A genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1): 191-203. [32] 张凯伦, 罗祖良, 郭玉华, 等. bHLH转录因子调控药用植物萜类化合物生物合成的研究进展[J]. 中国现代中药, 2017, 19(1): 142-147. [33] RUSHTON P J, BOKOWIEC M T, HAN S, et al.Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae[J]. Plant Physiology, 2008, 147(1): 280-295. [34] ZHANG X, LUO H M, XU Z C, et al.Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza[J]. Scientific Reports, 2015, 5: 11244. [35] HONG G J, XUE X Y, MAO Y B, et al.ArabidopsisMYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. The Plant Cell, 2012, 24(6): 2635-2648. [36] RAHIM M A, BUSATTO N, TRAINOTTI L.Regulation of anthocyanin biosynthesis in peach fruits[J]. Planta, 2014, 240(5): 913-929. [37] MA P D, LIU J L, ZHANG C L, et al.Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge[J]. Applied Biochemistry and Biotechnology, 2013, 170(6): 1253-1262. [38] VIDAL E A, ARAUS V, LU C, et al.Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4477-4482. [39] 刘文文. bHLH122提高植物抗逆能力的分子机制初探[D]. 北京: 中国农业科学院, 2013. |