Journal of Zhejiang Agricultural Sciences ›› 2022, Vol. 63 ›› Issue (10): 2359-2363.DOI: 10.16178/j.issn.0528-9017.20213364
Previous Articles Next Articles
Received:
2022-04-23
Online:
2022-10-11
Published:
2022-10-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20213364
统计 时间 | 传统方法 | 培养架 | 改进后方法 | |||
---|---|---|---|---|---|---|
温度/℃ | 湿度/% | 温度/℃ | 湿度/% | 温度/℃ | 湿度/% | |
11:00 | 31.9 | 49 | 41.3 | 28 | 27.6 | 68 |
14:00 | 31.4 | 67 | 41.4 | 25 | 28.2 | 67 |
17:00 | 32.9 | 45 | 42.2 | 25 | 26.6 | 65 |
统计 时间 | 传统方法 | 培养架 | 改进后方法 | |||
---|---|---|---|---|---|---|
温度/℃ | 湿度/% | 温度/℃ | 湿度/% | 温度/℃ | 湿度/% | |
11:00 | 31.9 | 49 | 41.3 | 28 | 27.6 | 68 |
14:00 | 31.4 | 67 | 41.4 | 25 | 28.2 | 67 |
17:00 | 32.9 | 45 | 42.2 | 25 | 26.6 | 65 |
方法 | 品种 | 胞囊数 | 胞囊指数 | 标准差 (数值范围) | 抗病等级** | |||||
---|---|---|---|---|---|---|---|---|---|---|
重复1 | 重复2 | 重复3 | 重复4 | 重复5 | 平均值 | |||||
传统方法 | Lee | 347.0 | 59.0 | 48.0 | 35.0 | 51.0 | 108.0 | — | 133.9 (35~347) | — |
品种2 | 10.0 | 0.0 | 7.0 | 0.0 | 0.0 | 3.4 | 3.1 | 4.8 (0~10) | R | |
品种3 | 46.0 | 25.0 | 65.0 | 43.0 | 32.0 | 42.2 | 39.1 | 15.3 (25~65) | MS | |
品种4 | 79.0 | 41.0 | 84.0 | 51.0 | 37.0 | 58.4 | 54.1 | 21.8 (37~84) | MS | |
品种5 | 25.0 | 36.0 | 34.0 | 28.0 | 80.0 | 40.6 | 37.6 | 22.5 (25~80) | MS | |
品种6 | 21.0 | 7.0 | 13.0 | 20.0 | 37.0 | 19.6 | 18.1 | 11.3 (7~37) | MR | |
品种7 | 20.0 | 43.0 | 22.0 | 14.0 | 9.0 | 21.6 | 20.0 | 13.0 (9~43) | MR | |
品种8 | 49.0 | 68.0 | 97.0 | 73.0 | 127.0 | 82.8 | 76.7 | 30.1 (49~127) | S | |
改进方法 | Lee | 166.0 | 138.0 | 102.0 | 111.0 | 134.0 | 130.2 | — | 25.1 (102~166) | — |
品种2 | 7.0 | 3.0 | 8.0 | 9.0 | 8.0 | 7.0 | 5.4 | 2.3 (3~9) | R | |
品种3 | 67.0 | 46.0 | 40.0 | 47.0 | 36.0 | 47.2 | 36.3 | 11.9 (36~67) | MS | |
品种4 | 45.0 | 73.0 | 79.0 | 59.0 | 52.0 | 61.6 | 47.3 | 14.2 (45~79) | MS | |
品种5 | 68.0 | 42.0 | 35.0 | 45.0 | 59.0 | 49.8 | 38.2 | 13.4 (35~68) | MS | |
品种6 | 10.0 | 15.0 | 19.0 | 12.0 | 16.0 | 14.4 | 11.1 | 3.5 (10~19) | MR | |
品种7 | 16.0 | 25.0 | 6.0 | 26.0 | 25.0 | 19.6 | 15.1 | 8.6 (6~26) | MR | |
品种8 | 100.0 | 98.0 | 79.0 | 110.0 | 85.0 | 94.4 | 72.5 | 12.4 (79~110) | S |
方法 | 品种 | 胞囊数 | 胞囊指数 | 标准差 (数值范围) | 抗病等级** | |||||
---|---|---|---|---|---|---|---|---|---|---|
重复1 | 重复2 | 重复3 | 重复4 | 重复5 | 平均值 | |||||
传统方法 | Lee | 347.0 | 59.0 | 48.0 | 35.0 | 51.0 | 108.0 | — | 133.9 (35~347) | — |
品种2 | 10.0 | 0.0 | 7.0 | 0.0 | 0.0 | 3.4 | 3.1 | 4.8 (0~10) | R | |
品种3 | 46.0 | 25.0 | 65.0 | 43.0 | 32.0 | 42.2 | 39.1 | 15.3 (25~65) | MS | |
品种4 | 79.0 | 41.0 | 84.0 | 51.0 | 37.0 | 58.4 | 54.1 | 21.8 (37~84) | MS | |
品种5 | 25.0 | 36.0 | 34.0 | 28.0 | 80.0 | 40.6 | 37.6 | 22.5 (25~80) | MS | |
品种6 | 21.0 | 7.0 | 13.0 | 20.0 | 37.0 | 19.6 | 18.1 | 11.3 (7~37) | MR | |
品种7 | 20.0 | 43.0 | 22.0 | 14.0 | 9.0 | 21.6 | 20.0 | 13.0 (9~43) | MR | |
品种8 | 49.0 | 68.0 | 97.0 | 73.0 | 127.0 | 82.8 | 76.7 | 30.1 (49~127) | S | |
改进方法 | Lee | 166.0 | 138.0 | 102.0 | 111.0 | 134.0 | 130.2 | — | 25.1 (102~166) | — |
品种2 | 7.0 | 3.0 | 8.0 | 9.0 | 8.0 | 7.0 | 5.4 | 2.3 (3~9) | R | |
品种3 | 67.0 | 46.0 | 40.0 | 47.0 | 36.0 | 47.2 | 36.3 | 11.9 (36~67) | MS | |
品种4 | 45.0 | 73.0 | 79.0 | 59.0 | 52.0 | 61.6 | 47.3 | 14.2 (45~79) | MS | |
品种5 | 68.0 | 42.0 | 35.0 | 45.0 | 59.0 | 49.8 | 38.2 | 13.4 (35~68) | MS | |
品种6 | 10.0 | 15.0 | 19.0 | 12.0 | 16.0 | 14.4 | 11.1 | 3.5 (10~19) | MR | |
品种7 | 16.0 | 25.0 | 6.0 | 26.0 | 25.0 | 19.6 | 15.1 | 8.6 (6~26) | MR | |
品种8 | 100.0 | 98.0 | 79.0 | 110.0 | 85.0 | 94.4 | 72.5 | 12.4 (79~110) | S |
[1] |
KIM K S, VUONG T D, QIU D, et al. Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean[J]. Theoretical and Applied Genetics, 2016, 129(12): 2295-2311.
DOI URL |
[2] |
KOENNING S R, WRATHER J A. Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009[J]. Plant Health Progress, 2010, 11(1): 5.
DOI URL |
[3] | DONALD P A, PIERSON P E, ST M S K, et al. Assessing Heterodera glycines-resistant and susceptible cultivar yield response[J]. Journal of Nematology, 2006, 38(1): 76-82. |
[4] |
HOWLAND A, MONNIG N, MATHESIUS J, et al. Survey of Heterodera glycines population densities and virulence phenotypes during 2015—2016 in Missouri[J]. Plant Disease, 2018, 102(12): 2407-2410.
DOI URL |
[5] |
LIAN Y, WANG J S, LI H C, et al. Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai rivers valley[J]. Acta Agronomica Sinica, 2016, 42(10): 1479.
DOI |
[6] | NIBLACK T L, COLGROVE A L, COLGROVE K, et al. Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788[J]. Plant Health Progress, 2008, 9(1). |
[7] |
LIAN Y, GUO J Q, LI H C, et al. A new race (X12) of soybean cyst nematode in China[J]. Journal of Nematology, 2017, 49(3): 321-326.
PMID |
[8] | 练云, 李海朝, 李金英, 等. 利用KASP标记筛选含rhg1和Rhg4位点的大豆抗病资源[J]. 植物遗传资源学报, 2021(2): 399-406. |
[9] |
SHAIBU A S, LI B, ZHANG S R, et al. Soybean cyst nematode-resistance: gene identification and breeding strategies[J]. The Crop Journal, 2020, 8(6): 892-904.
DOI URL |
[10] |
MITCHUM M G. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update[J]. Phytopathology, 2016, 106(12): 1444-1450.
DOI URL |
[11] | RIGGS R D, SCHMITT D P. Complete characterization of the race scheme for Heterodera glycines[J]. Journal of Nematology, 1988, 20(3): 392-395. |
[12] |
LIAN Y, WEI H, WANG J S, et al. Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines[J]. Molecular Ecology Resources, 2019, 19(6): 1637-1646.
DOI URL |
[13] | WANG D, DUAN Y X, WANG Y Y, et al. First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China[J]. Plant Disease, 2015, 99(6): 893. |
[14] |
LU H, TALLMAN J, HU X, et al. An innovative method for counting females of soybean cyst nematode with fluorescence imaging technology[J]. Journal of Nematology, 2005, 37(4): 495-499.
PMID |
[15] | BROWN S, YECKEL G, HEINZ R, et al. A high-throughput automated technique for counting females of Heterodera glycines using a fluorescence-based imaging system[J]. Journal of Nematology, 2010, 42(3): 201-206. |
[16] | 句荣辉, 沈佐锐. 农业病虫害预测预报上应用的数据采集系统[J]. 植物保护, 2003, 29(5): 54-57. |
[17] | 矫永庆, 郭葳, 张凤, 等. 大豆褐化胞囊线虫胞囊自动计数方法: CN107860754A[P]. 2018-03-30. |
[18] |
COOK D E, BAYLESS A M, WANG K, et al. Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode[J]. Plant Physiology, 2014, 165(2): 630-647.
PMID |
[19] |
LIU S, KANDOTH P K, WARREN S D, et al. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J]. Nature, 2012, 492(7428): 256-260.
DOI URL |
[20] |
COOK D E, LEE T G, GUO X L, et al. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean[J]. Science, 2012, 338(6111): 1206-1209.
DOI PMID |
[21] |
KADAM S, VUONG T D, QIU D, et al. Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding[J]. Plant Science, 2016, 242: 342-350.
DOI PMID |
[22] |
SHI Z, LIU S M, NOE J, et al. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J]. BMC Genomics, 2015, 16(1): 314.
DOI URL |
[23] | HUANG M H, QIN R F, LI C J, et al. Transgressive resistance to Heterodera glycines in chromosome segment substitution lines derived from susceptible soybean parents[J]. The Plant Genome, 2021, 14(2): e20091. |
[24] | NEUPANE S, PURINTUN J M, MATHEW F M, et al. Molecular basis of soybean resistance to soybean aphids and soybean cyst nematodes[J]. Plants (Basel, Switzerland), 2019, 8(10): 374. |
[25] |
LÓPEZ-JIMÉNEZ A T, CARDENAL-MUÑOZ E, LEUBA F, et al. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection[J]. PLoS Pathogens, 2018, 14(12): e1007501.
DOI URL |
[26] |
BRZOSTOWSKI L F, DIERS B W. Pyramiding of alleles from multiple sources increases the resistance of soybean to highly virulent soybean cyst nematode isolates[J]. Crop Science, 2017, 57(6): 2932-2941.
DOI URL |
[27] |
ZHOU L J, SONG L, LIAN Y, et al. Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode[J]. Theoretical and Applied Genetics, 2021, 134(3): 859-874.
DOI PMID |
[28] |
USOVSKY M, YE H, VUONG T D, et al. Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C[J]. Theoretical and Applied Genetics, 2021, 134(2): 621-631.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||