Journal of Zhejiang Agricultural Sciences ›› 2023, Vol. 64 ›› Issue (10): 2349-2354.DOI: 10.16178/j.issn.0528-9017.20230224
Previous Articles Next Articles
Received:
2023-01-23
Online:
2023-10-11
Published:
2023-10-24
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230224
[1] | ZHANG Q, CHEN Q H, WANG S L, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014, 7(1): 24. |
[2] | LI X M, CHAO D Y, WU Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[3] | SREENIVASULU N, BUTARDO V M Jr, MISRA G, et al. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress[J]. Journal of Experimental Botany, 2015, 66(7): 1737-1748. |
[4] | ZHAO C, LIU B, PIAO S L, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[5] | 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展[J]. 应用生态学报, 2020, 31(8): 2817-2830. |
[6] | 田小海, 罗海伟, 周恒多, 等. 中国水稻热害研究历史、进展与展望[J]. 中国农学通报, 2009, 25(22): 166-168. |
[7] | PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 9971-9975. |
[8] | BYLER R K, GERRISH J B, BROOK R C. Data acquisition and control system for experimental thin-layer drying study[J]. Computers and Electronics in Agriculture, 1989, 3(3): 225-241. |
[9] | DE STORME N, GEELEN D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms[J]. Plant, Cell & Environment, 2014, 37(1): 1-18. |
[10] | BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant, Cell & Environment, 2008, 31(1): 11-38. |
[11] | KESAVAN M, SONG J T, SEO H S. Seed size: a priority trait in cereal crops[J]. Physiologia Plantarum, 2013, 147(2): 113-120. |
[12] | WANG K J, LI X H, YAN M F. Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb, Zucc.)[J]. Plant Systematics and Evolution, 2014, 300(7): 1729-1739. |
[13] | WANG Z F, WANG J F, BAO Y M, et al. Quantitative trait loci analysis for rice seed vigor during the germination stage[J]. Journal of Zhejiang University SCIENCE B, 2010, 11(12): 958-964. |
[14] | DRECCER M F, SCHAPENDONK A H C M, SLAFER G A, et al. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield[J]. Plant and Soil, 2000, 220(1): 189-205. |
[15] | PRASAD P V V, DJANAGUIRAMAN M, PERUMAL R, et al. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration[J]. Frontiers in Plant Science, 2015, 6: 820. |
[16] | LIU Q H, WU X, MA J Q, et al. Effects of high air temperature on rice grain quality and yield under field condition[J]. Agronomy Journal, 2013, 105(2): 446-454. |
[17] | YAMAKAWA H, HIROSE T, KURODA M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray[J]. Plant Physiology, 2007, 144(1): 258-277. |
[18] | YAMAKAWA H, HAKATA M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(5): 795-809. |
[19] | MORITA S, YONEMARU J I, TAKANASHI J I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.)[J]. Annals of Botany, 2005, 95(4): 695-701. |
[20] | FU Y Y, GU Q Q, DONG Q, et al. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism[J]. Molecules, 2019, 24(7): 1395. |
[21] | GUTTERMAN Y. Genotypic and phenotypic germination survival strategies of ecotypes and annual plant species in the Negev Desert of Israel[M]// Seed biology:advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. Wallingford: CABI, 2011: 389-399. |
[22] | EGLI D B, TEKRONY D M, HEITHOLT J J, et al. Air temperature during seed filling and soybean seed germination and vigor[J]. Crop Science, 2005, 45(4): 1329-1335. |
[23] | THOMAS J M G, PRASAD P V V, BOOTE K J, et al. Seed composition, seedling emergence and early seedling vigour of red kidney bean seed produced at elevated temperature and carbon dioxide[J]. Journal of Agronomy and Crop Science, 2009, 195(2): 148-156. |
[24] | DORNBOS JR D L, MCDONALD JR M B. Mass and composition of developing soybean seeds at five reproductive growth Stages1[J]. Crop Science, 1986, 26(3): 624-630. |
[25] | BENZING D H, DAVIDSON E A. Oligotrophic tillandsia circinnata schlecht (Bromeliaceae): an assessment of its patterns of mineral allocation and reproduction[J]. American Journal of Botany, 1979, 66(4): 386-397. |
[26] | KAUSHAL N, BHANDARI K, SIDDIQUE K H M, et al. Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance[J]. Cogent Food & Agriculture, 2016, 2(1): 1134380. |
[27] | HAMPTON J G, BOELT B, ROLSTON M P, et al. Effects of elevated CO2 and temperature on seed quality[J]. The Journal of Agricultural Science, 2013, 151(2): 154-162. |
[28] | CHEN M, FU Y Y, MOU Q S, et al. Spermidine induces expression of stress associated proteins (SAPs) genes and protects rice seed from heat stress-induced damage during grain-filling[J]. Antioxidants, 2021, 10(10): 1544. |
[29] | MADAN P, JAGADISH S V K, CRAUFURD P Q, et al. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice[J]. Journal of Experimental Botany, 2012, 63(10): 3843-3852. |
[30] | 张桂莲, 廖斌, 武小金, 等. 高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响[J]. 植物生理学报, 2014, 50(12): 1840-1844. |
[31] | 张晓. 杂交水稻种子淀粉、蛋白质、脂肪含量对其活力影响的初步研究[D]. 杭州: 浙江农林大学, 2014. |
[32] | LIN C J, LI C Y, LIN S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-10552. |
[33] | 韦克苏, 程方民, 张其芳, 等. 高温胁迫下水稻胚乳淀粉分支酶各同工型基因的表达特征[J]. 中国水稻科学, 2009, 23(1): 19-24. |
[34] | LIU J C, ZHAO Q, ZHOU L J, et al. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties[J]. Journal of Cereal Science, 2017, 76: 42-55. |
[35] | YAO D P, WU J, LUO Q H, et al. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch[J]. Food Chemistry, 2020, 310: 125817. |
[36] | WANG J C, XU H, ZHU Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[37] | FU F F, XUE H W. Coexpression analysis identifies rice starch regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology, 2010, 154(2): 927-938. |
[38] | 王丰, 程方民, 刘奕, 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化[J]. 作物学报, 2006, 32(1): 25-29. |
[39] | 滕中华, 智丽, 吕俊, 等. 灌浆期高温对水稻光合特性、内源激素和稻米品质的影响[J]. 生态学报, 2010, 30(23): 6504-6511. |
[40] | LIU J H, WANG W, WU H, et al. Polyamines function in stress tolerance: from synthesis to regulation[J]. Frontiers in Plant Science, 2015, 6: 827. |
[41] | TAO Y J, WANG J, MIAO J, et al. The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield[J]. Plant Physiology, 2018, 178(4): 1522-1536. |
[42] | SANG Q Q, SHAN X, AN Y H, et al. Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings' response to high-temperature stress[J]. Frontiers in Plant Science, 2017, 8: 120. |
[43] | TANG S, ZHANG H X, LI L, et al. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period[J]. Functional Plant Biology: FPB, 2018, 45(9): 911-921. |
[44] | SAGOR G H M, BERBERICH T, TAKAHASHI Y, et al. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes[J]. Transgenic Research, 2013, 22(3): 595-605. |
[45] | CHENG L, ZOU Y J, DING S L, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress[J]. Journal of Integrative Plant Biology, 2009, 51(5): 489-499. |
[46] | ZHAO Q, ZHOU L J, LIU J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[47] | 张桂莲, 张顺堂, 肖浪涛, 等. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响[J]. 中国水稻科学, 2014, 28(2): 155-166. |
[48] | 曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3): 512-521. |
[49] | 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J]. 作物学报, 2006, 32(9): 1306-1310. |
[50] | 谢晓金, 李秉柏, 朱红霞, 等. 抽穗期高温对水稻叶片光合特性和干物质积累的影响[J]. 中国农业气象, 2012, 33(3): 457-461. |
[51] | 张桂莲, 张顺堂, 肖浪涛, 等. 花期高温胁迫对水稻花药生理特性及花粉性状的影响[J]. 作物学报, 2013, 39(1): 177-183. |
[52] | 刘维, 李祎君, 吕厚荃. 早稻抽穗开花至成熟期气候适宜度对气候变暖与提前移栽的响应[J]. 中国农业科学, 2018, 51(1): 49-59. |
[53] | 陈新光, 王华, 邹永春, 等. 气候变化背景下广东早稻播期的适应性调整[J]. 生态学报, 2010, 30(17): 4748-4755. |
[54] | 张彬, 郑建初, 黄山, 等. 抽穗期不同灌水深度下水稻群体与大气的温度差异[J]. 应用生态学报, 2008, 19(1): 87-92. |
[55] | 王华, 杜尧东, 杜晓阳, 等. 灌浆期不同时间喷水降温对超级稻“玉香油占”产量和品质的影响[J]. 生态学杂志, 2017, 36(2): 413-419. |
[56] | 闫川, 丁艳锋, 王强盛, 等. 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响[J]. 作物学报, 2008, 34(12): 2176-2183. |
[57] | 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6): 591-602. |
[58] | 缪乃耀, 唐设, 陈文珠, 等. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究[J]. 南京农业大学学报, 2017, 40(1): 1-10. |
[59] | 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(1): 107-120. |
[60] | SHAHID M, NAYAK A K, TRIPATHI R, et al. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages[J]. International Journal of Biometeorology, 2018, 62(8): 1375-1387. |
[61] | FAHAD S, HUSSAIN S, SAUD S, et al. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature[J]. Frontiers in Plant Science, 2016, 7: 1250. |
[62] | FAHAD S, HUSSAIN S, SAUD S, et al. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures[J]. PLoS One, 2016, 11(7): e0159590. |
[63] | 符冠富, 张彩霞, 杨雪芹, 等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647. |
[64] | 杨军, 蔡哲, 刘丹, 等. 高温下喷施水杨酸和磷酸二氢钾对中稻生理特征和产量的影响[J]. 应用生态学报, 2019, 30(12): 4202-4210. |
[65] | FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1): 245. |
[66] | ZHAO Q, ZHOU L J, LIU J C, et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports, 2018, 37(5): 741-757. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||