[1] |
冯先橘, 林媚, 张伟清, 等. 温州蜜柑和红美人果园土壤营养状况评价[J]. 浙江农业科学, 2022, 63(2): 318-321.
|
[2] |
郑铭洁, 余红伟, 陈志良, 等. 浙西丘陵区柑橘园土壤健康状况及管理对策[J]. 浙江农业科学, 2022, 63(2): 324-329, 362.
|
[3] |
鲁艳红, 廖育林, 聂军, 等. 我国南方红壤酸化问题及改良修复技术研究进展[J]. 湖南农业科学, 2015(3): 148-151.
|
[4] |
BAQUY M A A, LI J Y, XU C Y, et al. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops[J]. Solid Earth, 2017, 8(1): 149-159.
|
[5] |
CAPUTO J, BEIER C M, SULLIVAN T J, et al. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack Region (USA)[J]. The Science of the Total Environment, 2016, 565: 401-411.
|
[6] |
李连智, 韩琳. 土壤改良剂的研究与应用进展[J]. 江西农业, 2019(14): 24.
|
[7] |
戴中民. 生物炭对酸化土壤的改良效应与生物化学机理研究[D]. 杭州: 浙江大学, 2017.
|
[8] |
杨丽丽, 董肖杰, 郑伟. 土壤改良剂的研究利用现状[J]. 河北林业科技, 2012(2): 27-30, 37.
|
[9] |
MASUD M M, BAQUY M A A, AKHTER S, et al. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110865.
|
[10] |
HUANG L M, YU G W, ZOU F Z, et al. Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments: a field study[J]. Applied Soil Ecology, 2018, 130: 104-119.
|
[11] |
LI X W, LI Y L, QU M, et al. Cell wall pectin and its methyl-esterification in transition zone determine Al resistance in cultivars of pea (Pisum sativum)[J]. Frontiers in Plant Science, 2016, 7: 39.
|
[12] |
LUPWAYI N Z, BENKE M B, HAO X Y, et al. Relating crop productivity to soil microbial properties in acid soil treated with cattle manure[J]. Agronomy Journal, 2014, 106(2): 612-621.
|
[13] |
武岩, 红梅, 林立龙, 等. 3种土壤改良剂对河套灌区玉米田温室气体排放的影响[J]. 环境科学, 2018, 39(1): 310-320.
|
[14] |
宋计平, 殷和勤, 杨延杰, 等. 不同土壤调理剂对黄瓜生长、品质及产量的影响[J]. 北方园艺, 2016(23): 19-23.
|
[15] |
QIAN L B, CHEN B L, HU D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar[J]. Environmental Science & Technology, 2013, 47(6): 2737-2745.
|
[16] |
DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification-A critical review[J]. The Science of the Total Environment, 2017, 581/582: 601-611.
|
[17] |
SU X X, YANG X R, LI H, et al. Bacterial communities are more sensitive to ocean acidification than fungal communities in estuarine sediments[J]. FEMS Microbiology Ecology, 2021, 97(5): fiab058.
|
[18] |
ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533-616.
|
[19] |
CHEN Q L, DING J, ZHU D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology and Biochemistry, 2020, 141: 107686.
|
[20] |
LYNCH M D J, NEUFELD J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology, 2015, 13(4): 217-229.
|
[21] |
LI C C, WANG L F, JI S P, et al. The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems[J]. Water Research, 2021, 202: 117428.
|