Journal of Zhejiang Agricultural Sciences ›› 2023, Vol. 64 ›› Issue (9): 2243-2250.DOI: 10.16178/j.issn.0528-9017.20230590
Previous Articles Next Articles
Received:
2022-05-30
Online:
2023-09-11
Published:
2023-09-14
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230590
[1] | RUSSO P, CAPOZZI V. Editorial: microbiological safety of foods[J]. Foods, 2020, 10(1): 53. |
[2] | KIM C, PAO S. Utilizing kitchen steamers to inactivate Listeria monocytogenes and Salmonella enterica on whole cantaloupe melons[J]. Journal of Food Safety, 2019, 39(4): e12653. |
[3] | ZHANG H Y, SERWAH BOATENG N A, NGOLONG NGEA G L, et al. Unravelling the fruit microbiome: the key for developing effective biological control strategies for postharvest diseases[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(5): 4906-4930. |
[4] | SHENG L N, LI X R, WANG L X. Photodynamic inactivation in food systems: a review of its application, mechanisms, and future perspective[J]. Trends in Food Science & Technology, 2022, 124: 167-181. |
[5] | LEE S H, CHOI W, JUN S. Conventional and emerging combination technologies for food processing[J]. Food Engineering Reviews, 2016, 8(4): 414-434. |
[6] | HUANG M S, ZHANG M, BHANDARI B. Recent development in the application of alternative sterilization technologies to prepared dishes: a review[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(7): 1188-1196. |
[7] | CAO X H, ZHANG M, MUJUMDAR A S, et al. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying[J]. Ultrasonics Sonochemistry, 2018, 40: 333-340. |
[8] | LI X, FARID M. A review on recent development in non-conventional food sterilization technologies[J]. Journal of Food Engineering, 2016, 182: 33-45. |
[9] | REZK A R, AHMED H, RAMESAN S, et al. High frequency sonoprocessing: a new field of cavitation-free acoustic materials synthesis, processing, and manipulation[J]. Advanced Science, 2020, 8(1): 2001983. |
[10] | YAMASHITA T, ANDO K. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: role of cavitation bubbles as physical cleaning agents[J]. Ultrasonics Sonochemistry, 2019, 52: 268-279. |
[11] | ZUPANC M, PANDUR Ž, STEPIŠNIK PERDIH T, et al. Effects of cavitation on different microorganisms: the current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research[J]. Ultrasonics Sonochemistry, 2019, 57: 147-165. |
[12] | LI J, AHN J, LIU D H, et al. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy[J]. Applied and Environmental Microbiology, 2016, 82(6): 1828-1837. |
[13] | DENG C X, SIELING F, PAN H, et al. Ultrasound-induced cell membrane porosity[J]. Ultrasound in Medicine & Biology, 2004, 30(4): 519-526. |
[14] | STRIDE E, PORTER C, PRIETO A G, et al. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields[J]. Ultrasound in Medicine & Biology, 2009, 35(5): 861-868. |
[15] | KANG D C, JIANG Y H, XING L J, et al. Inactivation of Escherichia coli O157:H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef[J]. Food Research International, 2017, 102: 717-727. |
[16] | MCNEIL P L. Repairing a torn cell surface: make way, lysosomes to the rescue[J]. Journal of Cell Science, 2002, 115(Pt5): 873-879. |
[17] | MIKI H, FUNATO Y. Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species[J]. The Journal of Biochemistry, 2012, 151(3): 255-261. |
[18] | TOMASZEWSKI R. A comparative study of citations to chemical encyclopedias in scholarly articles: Kirk-Othmer Encyclopedia of Chemical Technology and Ullmann's Encyclopedia of Industrial Chemistry[J]. Scientometrics, 2018, 117(1): 175-189. |
[19] | WU Q H, NI X H. ROS-mediated DNA methylation pattern alterations in carcinogenesis[J]. Current Drug Targets, 2015, 16(1): 13-19. |
[20] | SALLMYR A, FAN J S, RASSOOL F V. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair[J]. Cancer Letters, 2008, 270(1): 1-9. |
[21] | DAI J M, BAI M, LI C Z, et al. Advances in the mechanism of different antibacterial strategies based on ultrasound technique for controlling bacterial contamination in food industry[J]. Trends in Food Science & Technology, 2020, 105: 211-222. |
[22] | BEGUIN E, SHRIVASTAVA S, DEZHKUNOV N V, et al. Direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 19913-19919. |
[23] | KAWASAKI H, KUMAR S, LI G, et al. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters[J]. Chemistry of Materials, 2014, 26(9): 2777-2788. |
[24] | GAITAN D F, TESSIEN R A. Sonoluminescence from transient cavitation at high pressures in water and acetone[J]. The Journal of the Acoustical Society of America, 2007, 121(5): 3181. |
[25] | DMITRIEVA V A, TYUTEREVA E V, VOITSEKHOVSKAJA O V. Singlet oxygen in plants: generation, detection, and signaling roles[J]. International Journal of Molecular Sciences, 2020, 21(9): 3237. |
[26] | HABEEB RAHMAN A P, MISRA A J, DAS S, et al. Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles[J]. Chemical Engineering Journal, 2018, 336: 476-488. |
[27] | 李银汇, 王文骏, 吕瑞玲, 等. 超声波联合杀菌剂杀菌的研究进展[J]. 食品科学, 2022, 43(19): 348-358. |
[28] | NAGARKATTI M G. Ozone in water treatment: application and engineering[J]. Journal of Environmental Quality, 1991, 20(4): 881-882. |
[29] | YARGEAU V, DANYLO F. Removal and transformation products of ibuprofen obtained during ozone- and ultrasound-based oxidative treatment[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2015, 72(3): 491-500. |
[30] | YADAV M, GOLE V L, SHARMA J, et al. Biologically treated industrial wastewater disinfection using the synergy of low-frequency ultrasound and H2O2/O3[J]. Journal of Environmental Health Science & Engineering, 2022, 20(2): 889-898. |
[31] | MARYAM A, ANWAR R, MALIK A U, et al. Combined aqueous ozone and ultrasound application inhibits microbial spoilage, reduces pesticide residues and maintains storage quality of strawberry fruits[J]. Journal of Food Measurement and Characterization, 2021, 15(2): 1437-1451. |
[32] | ADAY M S, CANER C. Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life[J]. LWT-Food Science and Technology, 2014, 57(1): 344-351. |
[33] | TAIYE MUSTAPHA A, ZHOU C S, WAHIA H, et al. Sonozonation: enhancing the antimicrobial efficiency of aqueous ozone washing techniques on cherry tomato[J]. Ultrasonics Sonochemistry, 2020, 64: 105059. |
[34] | SUN Y T, WU Z X, ZHANG Y Y, et al. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce[J]. Ultrasonics Sonochemistry, 2022, 83: 105931. |
[35] | TRAORE M B, SUN A D, GAN Z L, et al. Antimicrobial capacity of ultrasound and ozone for enhancing bacterial safety on inoculated shredded green cabbage (Brassica oleracea var. capitata)[J]. Canadian Journal of Microbiology, 2020, 66(2): 125-137. |
[36] | SIDDIQUE Z, MALIK A U, ASI M R, et al. Sonolytic-ozonation technology for sanitizing microbial contaminants and pesticide residues from spinach (Spinacia oleracea L.) leaves, at household level[J]. Environmental Science and Pollution Research International, 2021, 28: 52913-52924. |
[37] | SIDDIQUE Z, MALIK A U. Fruits and vegetables are the major source of food safety issues need to overcome at household level (traditional vs. green technologies): a comparative review[J]. Journal of Food Safety, 2022, 42(5): e13003. |
[38] | AYDAR A Y, AYDıN T, KARAIZ A, et al. Effect of ultrasound assisted cleaning on pesticide removal and quality characteristics of Vitis vinifera leaves[J]. Ultrasonics Sonochemistry, 2023, 92: 106279. |
[39] | FAN X D, ZHANG W L, XIAO H Y, et al. Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce[J]. RSC Advances, 2015, 5(57): 45622-45630. |
[40] | SIDDIQUE Z, MALIK A U, ASI M R, et al. Impact of sonolytic ozonation (O3/US) on degradation of pesticide residues in fresh vegetables and fruits: case study of Faisalabad, Pakistan[J]. Ultrasonics Sonochemistry, 2021, 79: 105799. |
[41] | DENG L Z, MUJUMDAR A S, PAN Z L, et al. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(15): 2481-2508. |
[42] | OFORI I, MADDILA S, LIN J, et al. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: the kinetics and mechanism[J]. Journal of Water Process Engineering, 2018, 26: 46-54. |
[43] | HE Q, LIU D H, ASHOKKUMAR M, et al. Antibacterial mechanism of ultrasound against Escherichia coli: alterations in membrane microstructures and properties[J]. Ultrasonics Sonochemistry, 2021, 73: 105509. |
[44] | LIAO X Y, LI J, SUO Y J, et al. Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus[J]. Food Science and Human Wellness, 2018, 7(1): 102-109. |
[45] | MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11): 5800-5808. |
[46] | MILLAN-SANGO D, SAMMUT E, VAN IMPE J F, et al. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide[J]. LWT-Food Science and Technology, 2017, 78: 90-96. |
[47] | AYYILDIZ O, SANIK S, ILERI B. Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency[J]. Ultrasonics Sonochemistry, 2011, 18(2): 683-688. |
[48] | WU W J, GAO H Y, CHEN H J, et al. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on shelf-life and nutritional quality of Bok choy (Brassica chinensis)[J]. LWT, 2019, 101: 757-763. |
[49] | CHEN Z, ZHU C H. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.)[J]. Postharvest Biology and Technology, 2011, 61(2/3): 117-123. |
[50] | ORTUÑO C, MARTÍNEZ-PASTOR M T, MULET A, et al. Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages[J]. The Journal of Supercritical Fluids, 2012, 63: 8-15. |
[51] | DA SILVA M A, DE ARAUJO A P, DE SOUZA FERREIRA J, et al. Inactivation of Bacillus subtilis and Geobacillus stearothermophilus inoculated over metal surfaces using supercritical CO2 process and nisin[J]. The Journal of Supercritical Fluids, 2016, 109: 87-94. |
[52] | HOSSAIN M S, RAHMAN N N N A, BALAKRISHNAN V, et al. Mathematical modeling of Enterococcus faecalis, Escherichia coli, and Bacillus sphaericus inactivation in infectious clinical solid waste by using steam autoclaving and supercritical fluid carbon dioxide sterilization[J]. Chemical Engineering Journal, 2015, 267: 221-234. |
[53] | 柴利, 贺稚非, 谢晓红, 等. 超临界CO2在肉及肉制品杀菌中的应用研究进展[J]. 肉类研究, 2022, 36(2): 46-52. |
[54] | KOUBAA M, MHEMDI H, FAGES J. Recovery of valuable components and inactivating microorganisms in the agro-food industry with ultrasound-assisted supercritical fluid technology[J]. The Journal of Supercritical Fluids, 2018, 134: 71-79. |
[55] | PANIAGUA-MARTÍNEZ I, MULET A, GARCÍA-ALVARADO M A, et al. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 362-370. |
[56] | ORTUÑO C, MARTÍNEZ-PASTOR M T, MULET A, et al. Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae[J]. Food Research International, 2013, 51(2): 474-481. |
[57] | MICHELINO F, ZAMBON A, VIZZOTTO M T, et al. High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander[J]. Journal of CO2 Utilization, 2018, 24: 516-521. |
[58] | GOMEZ-GOMEZ A, BRITO-DE LA FUENTE E, GALLEGOS C, et al. Non-thermal pasteurization of lipid emulsions by combined supercritical carbon dioxide and high-power ultrasound treatment[J]. Ultrasonics Sonochemistry, 2020, 67: 105138. |
[59] | FERRENTINO G, KOMES D, SPILIMBERGO S. High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: a microbial and physicochemical study[J]. Food and Bioprocess Technology, 2015, 8(12): 2368-2382. |
[60] | OLIVEIRA M, ABADIAS M, USALL J, et al. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables-A review[J]. Trends in Food Science & Technology, 2015, 46(1): 13-26. |
[61] | 章潇天, 张慜, 过志梅. 超声波-气调联合处理对番茄、丝瓜混合贮藏保鲜效果的影响[J]. 食品与生物技术学报, 2020, 39(12): 62-70. |
[62] | 张福平, 陈蔚辉, 郑楚萍, 等. 超声波结合气调包装对番石榴贮藏品质与生理的影响[J]. 南方农业学报, 2017, 48(3): 493-498. |
[63] | ZHANG X T, ZHANG M, DEVAHASTIN S, et al. Effect of combined ultrasonication and modified atmosphere packaging on storage quality of pakchoi (Brassica chinensis L.)[J]. Food and Bioprocess Technology, 2019, 12(9): 1573-1583. |
[64] | CHEN L B, FAN K. Influence of ultrasound treatment in combination with modified atmosphere on microorganisms and quality attributes of fresh-cut lettuce[J]. International Journal of Food Science & Technology, 2021, 56(10): 5242-5249. |
[65] | FAN K, ZHANG M, JIANG F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: influence on microbial inhibition and storage quality[J]. Ultrasonics Sonochemistry, 2019, 54: 162-170. |
[66] | RADULOVIĆ N S, BLAGOJEVIĆ P D, STOJANOVIĆ-RADIĆ Z Z, et al. Antimicrobial plant metabolites: structural diversity and mechanism of action[J]. Current Medicinal Chemistry, 2013, 20(7): 932-952. |
[67] | HAMMERBACHER A, COUTINHO T A, GERSHENZON J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles[J]. Plant, Cell & Environment, 2019, 42(10): 2827-2843. |
[68] | LAMBERT R J W, SKANDAMIS P N, COOTE P J, et al. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol[J]. Journal of Applied Microbiology, 2001, 91(3): 453-462. |
[69] | BENNIS S, CHAMI F, CHAMI N, et al. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol[J]. Letters in Applied Microbiology, 2004, 38(6): 454-458. |
[70] | ZERINGUE H J, BROWN R L, NEUCERE J N, et al. Relationships between C6-C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production[J]. Journal of Agricultural and Food Chemistry, 1996, 44(2): 403-407. |
[71] | LEE G, KIM Y, KIM H, et al. Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts[J]. International Journal of Food Microbiology, 2018, 265: 49-54. |
[72] | SHAO X F, WANG H F, XU F, et al. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit[J]. Postharvest Biology and Technology, 2013, 77: 94-101. |
[73] | JUNAID P M, DAR A H, DASH K K, et al. Advances in seed oil extraction using ultrasound assisted technology: a comprehensive review[J]. Journal of Food Process Engineering, 2023, 46(6): e14192. |
[74] | HU W B, YANG Z W, WANG W J. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja: HPLC profile, antimicrobial and antioxidant activity[J]. Industrial Crops and Products, 2019, 130: 615-626. |
[75] | ABDELKEBIR R, ALCÁNTARA C, FALCÓ I, et al. Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts[J]. Innovative Food Science & Emerging Technologies, 2019, 52: 189-196. |
[76] | DING Q Z, SHEIKH A R, GU X Y, et al. Chinese Propolis: Ultrasound-assisted enhanced ethanolic extraction, volatile components analysis, antioxidant and antibacterial activity comparison[J]. Food Science & Nutrition, 2020, 9(1): 313-330. |
[77] | BANOŽIĆ M, ALADIĆ K, JERKOVIĆ I, et al. Volatile organic compounds of tobacco leaves versus waste (scrap, dust, and midrib): extraction and optimization[J]. Journal of the Science of Food and Agriculture, 2021, 101(5): 1822-1832. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||