
Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (11): 2723-2732.DOI: 10.16178/j.issn.0528-9017.20230685
Previous Articles Next Articles
ZHAO Hui1(
), ZHONG Shi2, SUN Yuqing2, HUO Jinxi2, LI Yougui2,*(
)
Received:2023-07-03
Online:2024-11-11
Published:2024-11-15
CLC Number:
ZHAO Hui, ZHONG Shi, SUN Yuqing, HUO Jinxi, LI Yougui. Research progress of mulberry twig alkaloids[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(11): 2723-2732.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230685
| 种类 | 名称 | 参考文献 |
|---|---|---|
| 1-脱氧野尻霉素(DNJ) | 1-deoxynojirimycin | [ |
| N-甲基-l-l脱氧野尻霉素 | N-methy-l-l deoxynojirimycin | [ |
| 4-O-β-D-吡喃葡糖基 | 4-O-β-D-glucopyranosyl | [ |
| 1,4双脱氧-1,4-亚氨基-(2-O-β-D-吡喃葡糖基)-D-阿拉伯糖醇 | 1,4-dideoxy-1,4-imino-(2-0-B-D-glucopyranosyl)-D-arabinitol | [ |
| 荞麦碱(FAG) | fagomine | [ |
| 3-表荞麦碱 | 3-epi-fagomine | [ |
| 打碗花精B2 | calysteginB2 | [ |
| 1,4双脱氧-1,4-亚氨基-D-阿拉伯糖醇(DAB) | 1,4-dideoxy-1,4-mino-D-arabinitol | [ |
| 2-O-β-D-吡喃葡糖基-1-脱氧野尻霉素 | 2-O-(B-D-glucopyranosyl)-1-deoxynojirimycin | [ |
| 6-O-β-D-吡喃葡糖基-1-脱氧野尻霉素 | 6-O-(B-D-glucopyranosyl)-1-Deoxynojirimycin | [ |
| 2-O-(α-d-吡喃半乳糖基)-1-脱氧野尻霉素 | 2-O-(α-d-galactopyranosyl)-1-deoxynojirimycin | [ |
Table 1 Chemical constituents of alkaloids in mulberry twig
| 种类 | 名称 | 参考文献 |
|---|---|---|
| 1-脱氧野尻霉素(DNJ) | 1-deoxynojirimycin | [ |
| N-甲基-l-l脱氧野尻霉素 | N-methy-l-l deoxynojirimycin | [ |
| 4-O-β-D-吡喃葡糖基 | 4-O-β-D-glucopyranosyl | [ |
| 1,4双脱氧-1,4-亚氨基-(2-O-β-D-吡喃葡糖基)-D-阿拉伯糖醇 | 1,4-dideoxy-1,4-imino-(2-0-B-D-glucopyranosyl)-D-arabinitol | [ |
| 荞麦碱(FAG) | fagomine | [ |
| 3-表荞麦碱 | 3-epi-fagomine | [ |
| 打碗花精B2 | calysteginB2 | [ |
| 1,4双脱氧-1,4-亚氨基-D-阿拉伯糖醇(DAB) | 1,4-dideoxy-1,4-mino-D-arabinitol | [ |
| 2-O-β-D-吡喃葡糖基-1-脱氧野尻霉素 | 2-O-(B-D-glucopyranosyl)-1-deoxynojirimycin | [ |
| 6-O-β-D-吡喃葡糖基-1-脱氧野尻霉素 | 6-O-(B-D-glucopyranosyl)-1-Deoxynojirimycin | [ |
| 2-O-(α-d-吡喃半乳糖基)-1-脱氧野尻霉素 | 2-O-(α-d-galactopyranosyl)-1-deoxynojirimycin | [ |
| 提取方法 | 提取条件 | 参考文献 |
|---|---|---|
| 超声波辅助乙醇溶剂提取法 | 提取时间20 min,提取温度60 ℃,料液比1∶20,超声功率800 W,乙醇浓度60% | [ |
| 乙醇溶剂常温浸提法 | 提取液25% 乙醇-0. 05 mol·L-1盐酸,常温浸提 3 h,提取两次 | [ |
| 水提醇沉法 | 加水煎煮浓缩,加70%乙醇,静置过夜,回收乙醇 | [ |
| 微波辅助提取法 | 微波功率406 W(中火)、微波处理时间1.5 min、固液比(g·mL-1)1∶40、提取次数2次 | [ |
Table 2 Main extraction methods of alkaloids from mulberry twig
| 提取方法 | 提取条件 | 参考文献 |
|---|---|---|
| 超声波辅助乙醇溶剂提取法 | 提取时间20 min,提取温度60 ℃,料液比1∶20,超声功率800 W,乙醇浓度60% | [ |
| 乙醇溶剂常温浸提法 | 提取液25% 乙醇-0. 05 mol·L-1盐酸,常温浸提 3 h,提取两次 | [ |
| 水提醇沉法 | 加水煎煮浓缩,加70%乙醇,静置过夜,回收乙醇 | [ |
| 微波辅助提取法 | 微波功率406 W(中火)、微波处理时间1.5 min、固液比(g·mL-1)1∶40、提取次数2次 | [ |
| 基因表达 | 变化 | 参考文献 |
|---|---|---|
| Ser473-AKT | 促进磷酸化 | [ |
| p85-PI3K | 促进磷酸化 | [ |
| Tyr1361-IR-β | 促进磷酸化 | [ |
| Tyr612-IRS1 | 促进磷酸化 | [ |
| SGLT1 | 下降 | [ |
| Na1/K1-ATP | 下降 | [ |
| GLUT2 | 下降 | [ |
| GK | 增强 | [ |
| PFK | 增强 | [ |
| PK mRNA | 增强 | [ |
| PDE1 | 增强 | [ |
| PEPCK | 下降 | [ |
| G-6-Pase | 下降 | [ |
| GLUT4 | 增强 | [ |
| AdipoR1 | 增强 | [ |
| AdipoR2 | 增强 | [ |
| ATP1A | 降低 | [ |
| CAMK2 | 降低 | [ |
Table 3 Effects of mulberry twig alkaloids on gene changes related to glucose metabolism in type 2 diabetic mice
| 基因表达 | 变化 | 参考文献 |
|---|---|---|
| Ser473-AKT | 促进磷酸化 | [ |
| p85-PI3K | 促进磷酸化 | [ |
| Tyr1361-IR-β | 促进磷酸化 | [ |
| Tyr612-IRS1 | 促进磷酸化 | [ |
| SGLT1 | 下降 | [ |
| Na1/K1-ATP | 下降 | [ |
| GLUT2 | 下降 | [ |
| GK | 增强 | [ |
| PFK | 增强 | [ |
| PK mRNA | 增强 | [ |
| PDE1 | 增强 | [ |
| PEPCK | 下降 | [ |
| G-6-Pase | 下降 | [ |
| GLUT4 | 增强 | [ |
| AdipoR1 | 增强 | [ |
| AdipoR2 | 增强 | [ |
| ATP1A | 降低 | [ |
| CAMK2 | 降低 | [ |
| 菌群名称 | 变化 | 参考文献 |
|---|---|---|
| 拟杆菌(Bacteroides) | 增加 | [ |
| 丹毒丝菌科(Erysipelotrichaceae) | 增加 | [ |
| 理研菌科(Rikenellaceae) | 减少 | [ |
| 脱硫弧菌科(Desulfovibrionaceae) | 减少 | [ |
Table 4 Effects of mulberry twig alkaloids on intestinal glucose metabolism-related flora in type 2 diabetic mice
| 菌群名称 | 变化 | 参考文献 |
|---|---|---|
| 拟杆菌(Bacteroides) | 增加 | [ |
| 丹毒丝菌科(Erysipelotrichaceae) | 增加 | [ |
| 理研菌科(Rikenellaceae) | 减少 | [ |
| 脱硫弧菌科(Desulfovibrionaceae) | 减少 | [ |
| 基因表达 | 变化 | 参考文献 |
|---|---|---|
| CD36 | 抑制 | [ |
| PPARγmRNA | 抑制 | [ |
| PPARαmRNA | 促进 | [ |
| ATPase | 抑制 | [ |
| APOA4 | 抑制 | [ |
| ACADVL | 抑制 | [ |
| CYP4A | 抑制 | [ |
| PAP | 抑制 | [ |
| SCD | 抑制 | [ |
| SREBP1c | 抑制 | [ |
| FAS | 抑制 | [ |
| ACC | 抑制 | [ |
Table 5 Effects of mulberry twig alkaloids on gene changes of hyperlipidemia mice induced by high fat diet
| 基因表达 | 变化 | 参考文献 |
|---|---|---|
| CD36 | 抑制 | [ |
| PPARγmRNA | 抑制 | [ |
| PPARαmRNA | 促进 | [ |
| ATPase | 抑制 | [ |
| APOA4 | 抑制 | [ |
| ACADVL | 抑制 | [ |
| CYP4A | 抑制 | [ |
| PAP | 抑制 | [ |
| SCD | 抑制 | [ |
| SREBP1c | 抑制 | [ |
| FAS | 抑制 | [ |
| ACC | 抑制 | [ |
| 菌群名称 | 变化 | 参考文献 |
|---|---|---|
| 拟杆菌Bacteroidaceae | 增加 | [ |
| 普氏栖粪杆菌Faecalibaculum | 增加 | [ |
| 异杆菌Isobacteria | 增加 | [ |
| 另枝菌Alistipes | 减少 | [ |
| 脱硫弧菌属Desulfovibrio | 减少 | [ |
| 气球菌Aerococcus | 减少 | [ |
| Turicibacter属 | 减少 | [ |
| 乳杆菌属 | 减少 | [ |
| Lachnoclostridium属 | 减少 | [ |
| Roseburia属 | 减少 | [ |
| 粘蛋白阿克曼菌Akkermansia | 增加 | [ |
| 双歧杆菌属Bifidobacterium | 增加 | [ |
Table 6 Effects of mulberry twig alkaloids on intestinal lipid metabolism related flora in type 2 diabetic mice
| 菌群名称 | 变化 | 参考文献 |
|---|---|---|
| 拟杆菌Bacteroidaceae | 增加 | [ |
| 普氏栖粪杆菌Faecalibaculum | 增加 | [ |
| 异杆菌Isobacteria | 增加 | [ |
| 另枝菌Alistipes | 减少 | [ |
| 脱硫弧菌属Desulfovibrio | 减少 | [ |
| 气球菌Aerococcus | 减少 | [ |
| Turicibacter属 | 减少 | [ |
| 乳杆菌属 | 减少 | [ |
| Lachnoclostridium属 | 减少 | [ |
| Roseburia属 | 减少 | [ |
| 粘蛋白阿克曼菌Akkermansia | 增加 | [ |
| 双歧杆菌属Bifidobacterium | 增加 | [ |
| [1] | 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 311. |
| [2] | (宋)苏颂编撰, 尚志钧辑校. 本草图经[M]. 合肥: 安徽科学技术出版社, 1994: 672-673. |
| [3] | (明)李时珍. 本草纲目[M]. 哈尔滨: 黑龙江科学技术出版社, 2012. |
| [4] | (明)张介宾著, 王勇审校. 景岳全书[M]. 天津: 天津科学技术出版社, 2015. |
| [5] | 刘玉玲, 汪仁芸, 夏学军, 等. 桑枝总生物碱研发历程回顾(一): 药学研究技术壁垒与规模化发展的挑战[J]. 中国糖尿病杂志, 2020, 28(7): 555-560. |
| [6] | 牛凤菊, 周祉延. 桑枝降血糖的活性部位研究[J]. 世界中西医结合杂志, 2015, 10(9): 1219-1221. |
| [7] | 王蕊, 刘春艳. 多羟基生物碱及其抗结核活性研究进展[J]. 科技视界, 2014(11): 6-8, 44. |
| [8] | 佚名. 我国首个降血糖原创天然药物桑枝总生物碱片获批上市[J]. 北方蚕业, 2020, 41(4): 14. |
| [9] | 黄先智. 桑枝条利用研究进展与讨论[J]. 蚕学通讯, 2019, 39(2): 23-24. |
| [10] | MOLYNEUX R J, GARDNER D R, JAMES L F, et al. Polyhydroxy alkaloids: chromatographic analysis[J]. Journal of Chromatography A, 2002, 967(1): 57-74. |
| [11] | 陈震, 汪仁芸, 朱丽莲, 等. 桑枝水提取物化学成分的研究[J]. 中草药, 2000, 31(7): 502-503. |
| [12] | 陈震. 一.桑枝水提物中抑制α-葡萄糖苷酶活性成分的研究二.多羟基哌啶类和吡咯烷类化合物的合成研究[D]. 北京: 中国协和医科大学, 1999. |
| [13] | YAGI M, KOUNO T, AOYAGI Y, et al. The structure of moranoline, a piperidine alkaloid from Morus species[J]. Nippon Nōgeikagaku Kaishi, 1976, 50(11): 571-572. |
| [14] | 邱长玉, 陆晓媚, 张朝华, 等. 14个桑树品种枝叶中的1-脱氧野尻霉素含量测定与分析[J]. 蚕学通讯, 2022, 42(3): 1-6. |
| [15] | KIM H S, KIM Y H, HONG Y S, et al. Alpha-glucosidase inhibitors from Commelina communis[J]. Planta Medica, 1999, 65(5): 437-439. |
| [16] | ASANO N, KATO A, MIYAUCHI M, et al. Nitrogen-containing furanose and pyranose analogues from Hyacinthus orientalis[J]. Journal of Natural Products, 1998, 61(5): 625-628. |
| [17] | WANG D J, ZHAO L, WANG D, et al. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry (Morus alba L.)[J]. PeerJ, 2018, 6: e5443. |
| [18] | ROBINSON R. LXXV:a theory of the mechanism of the phytochemical synthesis of certain alkaloids[J]. Journal of the Chemical Society, Faraday Transactions, 1917, 111: 876-899. |
| [19] | WANG D J, ZHAO L, JIANG J Y, et al. Cloning, expression, and functional analysis of lysine decarboxylase in mulberry (Morus alba L.)[J]. Protein Expression and Purification, 2018, 151: 30-37. |
| [20] | LIU J, WAN J Q, WANG D J, et al. Comparative transcriptome analysis of key reductase genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves and cloning, prokaryotic expression, and functional analysis of MaSDR1 and MaSDR2[J]. Journal of Agricultural and Food Chemistry, 2020, 68(44): 12345-12357. |
| [21] | YANG Z, LUO Y W, XIA X Y, et al. Dehydrogenase MnGutB1 catalyzes 1-deoxynojirimycin biosynthesis in mulberry[J]. Plant Physiology, 2023, 192(2): 1307-1320. |
| [22] | 陶程, 朱方容, 李秋捷, 等. 桑树主要活性物质提取技术的研究进展[J]. 广西蚕业, 2016, 53(3): 42-46. |
| [23] | 刘一衡, 杨玲. 正交设计优化新疆药桑桑叶总生物碱超声提取工艺[J]. 食品工业科技, 2013, 34(24): 306-308, 325. |
| [24] | 刘凡, 李平平, 廖森泰, 等. 98份不同桑树品种资源的桑叶总生物碱及1-脱氧野尻霉素含量测定[J]. 蚕业科学, 2012, 38(2): 185-191. |
| [25] | 杨文宇, 万德光. 桑树总生物碱分析方法与提取方法的探讨[J]. 时珍国医国药, 2008, 19(5): 1043-1045. |
| [26] | 胡瑞君, 车振明, 徐丹, 等. 微波辅助提取桑叶生物碱DNJ的工艺研究[J]. 食品科技, 2007, 32(8): 139-141. |
| [27] | 李凡, 裘雅渔, 钱文春, 等. 桑叶中总生物碱和1-脱氧野尻霉素的含量考察[J]. 中国药学杂志, 2008, 43(3): 176-179. |
| [28] | 夏学军, 汪仁芸, 刘玉玲. 柱前衍生化RP-HPLC法测定桑枝总生物碱的含量[J]. 中国新药杂志, 2008, 17(23): 2044-2047. |
| [29] | YANG S, WANG B L, XIA X J, et al. Simultaneous quantification of three active alkaloids from a traditional Chinese medicine Ramulus Mori (Sangzhi) in rat plasma using liquid chromatography-tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 109: 177-183. |
| [30] | 李宏, 钱永华, 王建芳, 等. 桑叶中1-脱氧野尻霉素(DNJ)的气相法测定[J]. 北方蚕业, 2006, 27(3): 31-32. |
| [31] | 李昊宇, 何华秋, 李强. 桑枝生物碱对糖脂代谢的作用[J]. 中国糖尿病杂志, 2022, 30(2): 154-158. |
| [32] | 刘率男, 刘泉, 李彩娜, 等. 创新降糖中药桑枝总生物碱调节肠-胰岛轴作用及机制初探[J]. 中国药理学与毒理学杂志, 2019, 33(9): 666-667. |
| [33] | YANG S, MI J Q, LIU Z H, et al. Pharmacokinetics, tissue distribution, and elimination of three active alkaloids in rats after oral administration of the effective fraction of alkaloids from Ramulus mori, an innovative hypoglycemic agent[J]. Molecules, 2017, 22(10): 1616. |
| [34] | QU L, LIANG X C, TIAN G Q, et al. Efficacy and safety of mulberry twig alkaloids tablet for the treatment of type 2 diabetes: a multicenter, randomized, double-blind, double-dummy, and parallel controlled clinical trial[J]. Diabetes Care, 2021, 44(6): 1324-1333. |
| [35] | CHRUBASIK-HAUSMANN S. Ramulus mori (mulberry twig) alkaloids vs. acarbose for type 2 diabetes[J]. Focus on Alternative and Complementary Therapies, 2016, 21(3/4): 166-167. |
| [36] | 李名洁, 孙代华, 王泽霞, 等. 桑不同药用部位总生物碱对α-葡萄糖苷酶活性的抑制作用[J]. 中国现代中药, 2021, 23(2): 290-293. |
| [37] | 刘率男, 刘泉, 孙素娟, 等. α葡萄糖苷酶抑制剂桑枝总生物碱的抗糖尿病作用研究[J]. 药学学报, 2019, 54(7): 1225-1233. |
| [38] | LIU Q, LIU S N, CAO H, et al. Ramulus mori (Sangzhi) alkaloids (SZ-A) ameliorate glucose metabolism accompanied by the modulation of gut microbiota and ileal inflammatory damage in type 2 diabetic KKAy mice[J]. Frontiers in Pharmacology, 2021, 12: 642400. |
| [39] | CHEN F, NAKASHIMA N, KIMURA I, et al. Potentiating effects on pilocarpine-induced saliva secretion, by extracts and N-containing sugars derived from mulberry leaves, in streptozocin-diabetic mice[J]. Biological & Pharmaceutical Bulletin, 1995, 18(12): 1676-1680. |
| [40] | LEI L, HUAN Y, LIU Q, et al. Morus alba L. (Sangzhi) alkaloids promote insulin secretion, restore diabetic β-cell function by preventing dedifferentiation and apoptosis[J]. Frontiers in Pharmacology, 2022, 13: 841981. |
| [41] | LIU Q P, LI X, LI C Y, et al. 1-deoxynojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice[J]. Molecules, 2015, 20(12): 21700-21714. |
| [42] | CHEN Y M, LIAN C F, SUN Q W, et al. Ramulus mori (Sangzhi) alkaloids alleviate high-fat diet-induced obesity and nonalcoholic fatty liver disease in mice[J]. Antioxidants, 2022, 11(5): 905. |
| [43] | LI Y G, JI D F, ZHONG S, et al. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice[J]. Scientific Reports, 2013, 3: 1377. |
| [44] | LEE S M, DO H J, SHIN M J, et al. 1-Deoxynojirimycin isolated from a Bacillus subtilis stimulates adiponectin and GLUT4 expressions in 3T3-L1 adipocytes[J]. Journal of Microbiology and Biotechnology, 2013, 23(5): 637-643. |
| [45] | 胡雪芹. 桑叶1-脱氧野尻霉素降糖降脂机理及其产生菌的筛选[D]. 合肥: 合肥工业大学, 2017. |
| [46] | SUN Q W, LIAN C F, CHEN Y M, et al. Ramulus mori (Sangzhi) alkaloids ameliorate obesity-linked adipose tissue metabolism and inflammation in mice[J]. Nutrients, 2022, 14(23): 5050. |
| [47] | LI Y G, XU W Y, ZHANG F, et al. The gut microbiota-produced indole-3-propionic acid confers the antihyperlipidemic effect of mulberry-derived 1-deoxynojirimycin[J]. mSystems, 2020, 5(5): e00313-e00320. |
| [48] | LI Y G, ZHONG S, YU J Q, et al. The mulberry-derived 1-deoxynojirimycin (DNJ) inhibits high-fat diet (HFD)-induced hypercholesteremia and modulates the gut microbiota in a gender-specific manner[J]. Journal of Functional Foods, 2019, 52: 63-72. |
| [49] | LIU D D, YE J, YAN Y, et al. Ramulus mori (Sangzhi) alkaloids regulates gut microbiota disorder and its metabolism profiles in obese mice induced by a high-fat diet[J]. Frontiers in Pharmacology, 2023, 14: 1166635. |
| [50] | FUKE N, NAGATA N, SUGANUMA H, et al. Regulation of gut microbiota and metabolic endotoxemia with dietary factors[J]. Nutrients, 2019, 11(10): 2277. |
| [51] | BLAAK E E, CANFORA E E, THEIS S, et al. Short chain fatty acids in human gut and metabolic health[J]. Beneficial Microbes, 2020, 11(5): 411-455. |
| [52] | CAO H, JI W M, LIU Q, et al. Morus alba L. (Sangzhi) alkaloids (SZ-A) exert anti-inflammatory effects via regulation of MAPK signaling in macrophages[J]. Journal of Ethnopharmacology, 2021, 280: 114483. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||