
Journal of Zhejiang Agricultural Sciences ›› 2026, Vol. 67 ›› Issue (1): 271-280.DOI: 10.16178/j.issn.0528-9017.20250531
ZHANG Hang(
), KONG Lingcheng(
)
Received:2025-07-23
Online:2026-01-11
Published:2026-01-19
Contact:
KONG Lingcheng
CLC Number:
ZHANG Hang, KONG Lingcheng. Environmental regulation, spatial spillover, and agricultural green total factor productivity: an analysis based on panel data from the Yangtze River economic belt[J]. Journal of Zhejiang Agricultural Sciences, 2026, 67(1): 271-280.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20250531
| 变量 | 观测值 | 平均值 | 标准差 | 最小值 | 最大值 |
|---|---|---|---|---|---|
| A | 187 | 1.105 | 0.112 | 0.798 | 1.712 |
| E | 187 | -0.464 | 0.161 | -0.924 | -0.190 |
| L | 187 | 2.276 | 0.131 | 1.823 | 2.538 |
| S | 187 | 1.192 | 0.416 | 0.619 | 3.058 |
| O | 187 | 9.838 | 0.341 | 6.772 | 12.200 |
| N | 187 | 0.298 | 0.333 | 0.027 | 1.670 |
Table 1 Descriptive statistics of variables
| 变量 | 观测值 | 平均值 | 标准差 | 最小值 | 最大值 |
|---|---|---|---|---|---|
| A | 187 | 1.105 | 0.112 | 0.798 | 1.712 |
| E | 187 | -0.464 | 0.161 | -0.924 | -0.190 |
| L | 187 | 2.276 | 0.131 | 1.823 | 2.538 |
| S | 187 | 1.192 | 0.416 | 0.619 | 3.058 |
| O | 187 | 9.838 | 0.341 | 6.772 | 12.200 |
| N | 187 | 0.298 | 0.333 | 0.027 | 1.670 |
| 年份 | 环境规制 | 农业全要素生产率 | ||
|---|---|---|---|---|
| Moran's I指数 | p值 | Moran's I指数 | p值 | |
| 2010 | 0.156 | 0.110 | 0.378*** | <0.001 |
| 2013 | 0.182* | 0.071 | 0.527*** | <0.001 |
| 2014 | 0.168* | 0.090 | 0.522*** | <0.001 |
| 2015 | 0.188* | 0.064 | 0.401*** | <0.001 |
| 2017 | 0.188* | 0.064 | 0.396*** | <0.001 |
| 2019 | 0.165* | 0.096 | 0.354** | 0.001 |
| 2022 | 0.162* | 0.100 | 0.148 | 0.121 |
| 2023 | 0.168* | 0.090 | 0.146 | 0.117 |
Table 2 Spatial autocorrelation test results
| 年份 | 环境规制 | 农业全要素生产率 | ||
|---|---|---|---|---|
| Moran's I指数 | p值 | Moran's I指数 | p值 | |
| 2010 | 0.156 | 0.110 | 0.378*** | <0.001 |
| 2013 | 0.182* | 0.071 | 0.527*** | <0.001 |
| 2014 | 0.168* | 0.090 | 0.522*** | <0.001 |
| 2015 | 0.188* | 0.064 | 0.401*** | <0.001 |
| 2017 | 0.188* | 0.064 | 0.396*** | <0.001 |
| 2019 | 0.165* | 0.096 | 0.354** | 0.001 |
| 2022 | 0.162* | 0.100 | 0.148 | 0.121 |
| 2023 | 0.168* | 0.090 | 0.146 | 0.117 |
| 检验方法 | 原假设 | 统计值 | p值 | 结果 |
|---|---|---|---|---|
| LR检验 | SDM退化为SAR | 17.161 | 0.004 | 拒绝原假设 |
| SDM退化为SEM | 9.771 | 0.082 | 拒绝原假设 | |
| Wald检验 | SDM退化为SAR | 18.150 | 0.003 | 拒绝原假设 |
| SDM退化为SEM | 14.971 | 0.020 | 拒绝原假设 |
Table 3 Results of LR test and Wald test for spatial econometric models
| 检验方法 | 原假设 | 统计值 | p值 | 结果 |
|---|---|---|---|---|
| LR检验 | SDM退化为SAR | 17.161 | 0.004 | 拒绝原假设 |
| SDM退化为SEM | 9.771 | 0.082 | 拒绝原假设 | |
| Wald检验 | SDM退化为SAR | 18.150 | 0.003 | 拒绝原假设 |
| SDM退化为SEM | 14.971 | 0.020 | 拒绝原假设 |
| 变量 | 不同固定效应下的回归结果 | ||
|---|---|---|---|
| 双向固定 效应 | 个体固定 效应 | 时间固定 效应 | |
| E | 0.274** | 0.053 | 0.099* |
| (2.140) | (0.368) | (1.924) | |
| L | -0.287*** | -0.371*** | -0.303*** |
| (-4.567) | (-4.969) | (-4.748) | |
| S | -0.016 | 0.012 | -0.103*** |
| (-0.254) | (0.233) | (-3.540) | |
| O | -0.010 | 0.014 | -0.021** |
| (-0.441) | (0.619) | (-2.405) | |
| N | 0.069 | 0.041 | -0.003 |
| (0.627) | (0.336) | (-0.077) | |
| w·E | 0.810*** | 0.038 | 0.128 |
| (2.792) | (0.138) | (0.868) | |
| w·L | 0.403*** | 0.349*** | 0.391*** |
| (4.453) | (3.795) | (4.210) | |
| w·S | -0.053 | 0.057 | -0.117* |
| (-0.384) | (0.560) | (-1.912) | |
| w·O | -0.094 | -0.008 | -0.045** |
| (-1.469) | (-0.332) | (-2.314) | |
| w·N | 0.312* | 0.174 | 0.172** |
| (1.848) | (1.017) | (2.174) | |
| rho(空间自回归系数) | -1.065*** | 0.477*** | -0.117 |
| (-4.887) | (7.777) | (-1.206) | |
| Log-likelihood | 244.670 | 202.492 | 237.504 |
| (对数似然值) | |||
| AIC(赤池信息量准则) | -14.652 | -7.360 | -10.647 |
| BIC(贝叶斯信息量准则) | -14.534 | -7.243 | -10.532 |
Table 4 Estimation results of the spatial Dubin model (SDM)
| 变量 | 不同固定效应下的回归结果 | ||
|---|---|---|---|
| 双向固定 效应 | 个体固定 效应 | 时间固定 效应 | |
| E | 0.274** | 0.053 | 0.099* |
| (2.140) | (0.368) | (1.924) | |
| L | -0.287*** | -0.371*** | -0.303*** |
| (-4.567) | (-4.969) | (-4.748) | |
| S | -0.016 | 0.012 | -0.103*** |
| (-0.254) | (0.233) | (-3.540) | |
| O | -0.010 | 0.014 | -0.021** |
| (-0.441) | (0.619) | (-2.405) | |
| N | 0.069 | 0.041 | -0.003 |
| (0.627) | (0.336) | (-0.077) | |
| w·E | 0.810*** | 0.038 | 0.128 |
| (2.792) | (0.138) | (0.868) | |
| w·L | 0.403*** | 0.349*** | 0.391*** |
| (4.453) | (3.795) | (4.210) | |
| w·S | -0.053 | 0.057 | -0.117* |
| (-0.384) | (0.560) | (-1.912) | |
| w·O | -0.094 | -0.008 | -0.045** |
| (-1.469) | (-0.332) | (-2.314) | |
| w·N | 0.312* | 0.174 | 0.172** |
| (1.848) | (1.017) | (2.174) | |
| rho(空间自回归系数) | -1.065*** | 0.477*** | -0.117 |
| (-4.887) | (7.777) | (-1.206) | |
| Log-likelihood | 244.670 | 202.492 | 237.504 |
| (对数似然值) | |||
| AIC(赤池信息量准则) | -14.652 | -7.360 | -10.647 |
| BIC(贝叶斯信息量准则) | -14.534 | -7.243 | -10.532 |
| 变量 | 直接效应 | 间接效应 | 总效应 |
|---|---|---|---|
| E | 0.244* | 0.716*** | 0.959*** |
| (1.876) | (2.820) | (3.188) | |
| L | -0.310*** | -0.411*** | -0.105 |
| (-4.934) | (4.722) | (1.551) | |
| S | -0.008 | -0.043 | -0.050 |
| (-0.137) | (-0.369) | (-0.331) | |
| O | -0.006 | -0.080 | -0.086 |
| (-0.271) | (-1.393) | (-1.366) | |
| N | 0.062 | 0.278* | 0.339** |
| (0.564) | (1.801) | (2.480) | |
| rho | — | — | -1.065*** |
| (-4.887) | |||
| Sigma2_e | — | — | 0.006*** |
| (随机误差项的方差) | (9.539) | ||
| 样本量 | 187 | 187 | 187 |
Table 5 Decomposition of spatial spillover effects
| 变量 | 直接效应 | 间接效应 | 总效应 |
|---|---|---|---|
| E | 0.244* | 0.716*** | 0.959*** |
| (1.876) | (2.820) | (3.188) | |
| L | -0.310*** | -0.411*** | -0.105 |
| (-4.934) | (4.722) | (1.551) | |
| S | -0.008 | -0.043 | -0.050 |
| (-0.137) | (-0.369) | (-0.331) | |
| O | -0.006 | -0.080 | -0.086 |
| (-0.271) | (-1.393) | (-1.366) | |
| N | 0.062 | 0.278* | 0.339** |
| (0.564) | (1.801) | (2.480) | |
| rho | — | — | -1.065*** |
| (-4.887) | |||
| Sigma2_e | — | — | 0.006*** |
| (随机误差项的方差) | (9.539) | ||
| 样本量 | 187 | 187 | 187 |
| 变量 | 模型(1) | 模型(2) | 模型(3) |
|---|---|---|---|
| E | — | 1.109** | 1.328** |
| (0.546) | (1.741) | ||
| w·E | — | 0.810*** | 0.787** |
| (2.792) | (1.833) | ||
| AIR(空气流通系数) | 0.247* | — | — |
| (1.727) | |||
| 控制变量 | 控制 | 控制 | 控制 |
| 时间/个体固定 | 固定 | 固定 | 固定 |
| 样本量 | 187 | 187 | 187 |
| rho | -0.459*** | -0.538*** | -0.507*** |
| (7.303) | (7.459) | (6.967) | |
| Log-likehood | 198.348 | 237.807 | 235.337 |
Table 6 Robustness test results
| 变量 | 模型(1) | 模型(2) | 模型(3) |
|---|---|---|---|
| E | — | 1.109** | 1.328** |
| (0.546) | (1.741) | ||
| w·E | — | 0.810*** | 0.787** |
| (2.792) | (1.833) | ||
| AIR(空气流通系数) | 0.247* | — | — |
| (1.727) | |||
| 控制变量 | 控制 | 控制 | 控制 |
| 时间/个体固定 | 固定 | 固定 | 固定 |
| 样本量 | 187 | 187 | 187 |
| rho | -0.459*** | -0.538*** | -0.507*** |
| (7.303) | (7.459) | (6.967) | |
| Log-likehood | 198.348 | 237.807 | 235.337 |
| 变量 | 在不同子区域上的回归结果 | ||
|---|---|---|---|
| 上游 | 中游 | 下游 | |
| E | 0.249** | 0.201** | -0.882* |
| (2.101) | (2.501) | (1.774) | |
| w·E | 0.210** | 0.247** | -1.200* |
| (1.984) | (1.895) | (-1.814) | |
| rho | -0.755*** | -0.396*** | -0.583*** |
| (-5.016) | (-0.113) | (-0.162) | |
| 控制变量 | 控制 | 控制 | 控制 |
| 时间/个体固定 | 固定 | 固定 | 固定 |
| 样本量 | 68 | 51 | 68 |
| Log-likehood | 114.803 | 78.308 | 122.707 |
Table 7 Heterogeneity analysis results
| 变量 | 在不同子区域上的回归结果 | ||
|---|---|---|---|
| 上游 | 中游 | 下游 | |
| E | 0.249** | 0.201** | -0.882* |
| (2.101) | (2.501) | (1.774) | |
| w·E | 0.210** | 0.247** | -1.200* |
| (1.984) | (1.895) | (-1.814) | |
| rho | -0.755*** | -0.396*** | -0.583*** |
| (-5.016) | (-0.113) | (-0.162) | |
| 控制变量 | 控制 | 控制 | 控制 |
| 时间/个体固定 | 固定 | 固定 | 固定 |
| 样本量 | 68 | 51 | 68 |
| Log-likehood | 114.803 | 78.308 | 122.707 |
| 门槛变量 | 门槛性质 | 临界值 | F值 | p值 |
|---|---|---|---|---|
| ln Y | 单门槛 | 0.357 | 30.63 | <0.05 |
| ln Y | 双门槛 | 0.301 | 10.47 | 0.56 |
Table 8 Threshold effect test results
| 门槛变量 | 门槛性质 | 临界值 | F值 | p值 |
|---|---|---|---|---|
| ln Y | 单门槛 | 0.357 | 30.63 | <0.05 |
| ln Y | 双门槛 | 0.301 | 10.47 | 0.56 |
| [1] | 魏下海, 余玲铮. 中国全要素生产率变动的再测算与适用性研究: 基于数据包络分析与随机前沿分析方法的比较[J]. 华中农业大学学报(社会科学版), 2011(3): 76-83. |
| WEI X H, YU L Z. Reestimating total factor productivity growth of China and its applicability: a comparison between DEA and SFA[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2011(3): 76-83. | |
| [2] | 吴传清, 宋子逸. 长江经济带农业绿色全要素生产率测度及影响因素研究[J]. 科技进步与对策, 2018, 35(17): 35-41. |
| WU C Q, SONG Z Y. Study on the measurement and affecting factors of agricultural green total factor productivity in the Yangtze River economic belt[J]. Science & Technology Progress and Policy, 2018, 35(17): 35-41. | |
| [3] | 韩海彬, 赵丽芬. 环境约束下中国农业全要素生产率增长及收敛分析[J]. 中国人口·资源与环境, 2013, 23(3): 70-76. |
| HAN H B, ZHAO L F. Growth and convergence of agricultural total factor productivity in China under environmental regulations[J]. China Population, Resources and Environment, 2013, 23(3): 70-76. | |
| [4] | 张焱. 数字经济、 溢出效应与全要素生产率提升[J]. 贵州社会科学, 2021(3): 139-145. |
| ZHANG Y. Digital economy, spillover effect and total factor productivity improvement[J]. Guizhou Social Sciences, 2021(3): 139-145. | |
| [5] | 杜江, 王锐, 王新华. 环境全要素生产率与农业增长: 基于DEA-GML指数与面板Tobit模型的两阶段分析[J]. 中国农村经济, 2016(3): 65-81. |
| DU J, WANG R, WANG X H. Environmental total factor productivity and agricultural growth: a two-stage analysis based on DEA-GML index and panel Tobit model[J]. Chinese Rural Economy, 2016(3): 65-81. | |
| [6] | 袁芳, 张红丽, 陈文新. 西北地区绿色农业投资效率水平测度及空间差异[J]. 统计与决策, 2020, 36(24): 70-73. |
| YUAN F, ZHANG H L, CHEN W X. Measurement and spatial difference of investment efficiency level of green agriculture in northwest China[J]. Statistics & Decision, 2020, 36(24): 70-73. | |
| [7] | 徐永慧, 尹朝静. 环境规制下中国农业绿色全要素生产率的测算[J]. 统计与决策, 2021, 37(18): 50-54. |
| XU Y H, YIN C J. Measurement on green total factor productivity of China's agriculture under environmental regulation[J]. Statistics & Decision, 2021, 37(18): 50-54. | |
| [8] | 胡永浩, 张昆扬, 武拉平, 等. 环境规制对农业绿色全要素生产率的影响[J]. 生态经济, 2023, 39(12): 118-125. |
| HU Y H, ZHANG K Y, WU L P, et al. Influence of environmental regulation on agricultural green total factor productivity[J]. Ecological Economy, 2023, 39(12): 118-125. | |
| [9] | 倪瑛, 陈柏云, 王忆雯. 金融发展、环境规制与绿色全要素生产率: 基于空间杜宾模型的实证分析[J]. 贵州财经大学学报, 2020(3): 12-21. |
| NI Y, CHEN B Y, WANG Y W. Financial development, environmental regulation and green total factor productivity-an empirical analysis based on spatial Durbin model[J]. Journal of Guizhou University of Finance and Economics, 2020(3): 12-21. | |
| [10] | 胡雪萍, 乐冬. 环境规制促进了农业全要素生产率提升吗?[J]. 江汉论坛, 2022(11): 42-51. |
| HU X P, LE D. Does environmental regulation promote agricultural total factor productivity?[J]. Jianghan Tribune, 2022(11): 42-51. | |
| [11] | HU Y H, GUO X, ZHANG L, et al. Environmental regulation, innovation choices, and agricultural green total factor productivity under a multi-regulatory perspective[J]. Environmental Science and Pollution Research, 2024, 31(32): 45117-45137. |
| [12] | 秦腾, 章恒全. 农业发展进程中的水环境约束效应及影响因素研究: 以长江流域为例[J]. 南京农业大学学报(社会科学版), 2017, 17(2): 134-142. |
| QIN T, ZHANG H Q. Study on water environment constraint effect and its influencing factors in the process of agricultural development-a case study of the Yangtze River basin[J]. Journal of Nanjing Agricultural University (Social Sciences Edition), 2017, 17(2): 134-142. | |
| [13] | 尹礼汇, 吴传清. 环境规制与长江经济带污染密集型产业生态效率[J]. 中国软科学, 2021(8): 181-192. |
| YIN L H, WU C Q. Environmental regulation and the ecological efficiency of pollution-intensive industries in the Yangtze River economic belt[J]. China Soft Science, 2021(8): 181-192. | |
| [14] | YUAN B L, XIANG Q L. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model[J]. Journal of Cleaner Production, 2018, 176: 895-908. |
| [15] | 郭家兵. 环境规制对农业绿色全要素生产率的影响研究: 以浙江省为例[J]. 生产力研究, 2023(5): 89-93. |
| GUO J B. Study on the impact of environmental regulation on agricultural green total factor productivity: taking Zhejiang Province as an example[J]. Productivity Research, 2023(5): 89-93. | |
| [16] | 马国群, 谭砚文. 环境规制对农业绿色全要素生产率的影响研究: 基于面板门槛模型的分析[J]. 农业技术经济, 2021(5): 77-92. |
| MA G Q, TAN Y W. Impact of environmental regulation on agricultural green total factor productivity: analysis based on the panel threshold model[J]. Journal of Agrotechnical Economics, 2021(5): 77-92. | |
| [17] | 马海良, 顾莹莹, 黄德春, 等. 环境规制、数字赋能对产业结构升级的影响及机理[J]. 中国人口·资源与环境, 2024, 34(3): 124-136. |
| MA H L, GU Y Y, HUANG D C, et al. Impact and mechanisms of environmental regulation and digital empowerment on industrial structure upgrading[J]. China Population Resources and Environment, 2024, 34(3): 124-136. | |
| [18] | 朱金鹤, 王雅莉. 创新补偿抑或遵循成本? 污染光环抑或污染天堂?: 绿色全要素生产率视角下双假说的门槛效应与空间溢出效应检验[J]. 科技进步与对策, 2018, 35(20): 46-54. |
| ZHU J H, WANG Y L. “Innovation compensation”or “following costs”? “pollution paradise” or “pollution halo”?: the threshold effect of double hypothesis and the test of spatial spillover effect from the perspective of green total factor productivity[J]. Science & Technology Progress and Policy, 2018, 35(20): 46-54. | |
| [19] | 夏建红, 刘松, 丁晨峰, 等. 环境规制与绿色全要素生产率: 促进还是抑制?[J]. 经济问题, 2024(4): 60-67. |
| XIA J H, LIU S, DING C F, et al. Environmental regulation and green total factor productivity: promoting or suppressing?[J]. On Economic Problems, 2024(4): 60-67. | |
| [20] | 孙杰刚, 杨军. 地方政府竞争与绿色全要素生产率[J]. 经济问题, 2023(11): 114-121. |
| SUN J G, YANG J. Local government competition and green total factor productivity[J]. On Economic Problems, 2023(11): 114-121. | |
| [21] | 袁嘉琪, 卜伟, 唐雨妮. 环境规制、 要素配置对工业绿色全要素生产率的影响: 产出补偿还是创新补偿[J]. 管理评论, 2023(10): 45-62. |
| YUAN J Q, BU W, TANG Y N. The influence of environmental regulation and factor allocation on industrial green TFP: output compensation or innovation compensation[J]. Management Review, 2023(10): 45-62. | |
| [22] | 冯斐, 冯学钢, 侯经川, 等. 经济增长、区域环境污染与环境规制有效性: 基于京津冀地区的实证分析[J]. 资源科学, 2020, 42(12): 2341-2353. |
| FENG F, FENG X G, HOU J C, et al. Effectiveness of regional environmental regulation, economic growth and environmental pollution: an emprical study of the Beijing-Tianjin-Hebei region[J]. Resources Science, 2020, 42(12): 2341-2353. | |
| [23] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
| LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population Resources and Environment, 2011, 21(8): 80-86. | |
| [24] | 饶静, 许翔宇, 纪晓婷. 我国农业面源污染现状、发生机制和对策研究[J]. 农业经济问题, 2011, 32(8): 81-87. |
| RAO J, XU X Y, JI X T. Study on the present situation, occurrence mechanism and countermeasures of agricultural non-point source pollution in China[J]. Issues in Agricultural Economy, 2011, 32(8): 81-87. | |
| [25] | 周风, 文春晖. 提升还是抑制: 环境规制如何影响农业绿色全要素生产率[J/OL]. 中国农业资源与区划, 2024: 1-16. ( 2024-12-17)[2025-07-23]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGNZ2024121100A&dbname=CJFD&dbcode=CJFQ. |
| ZHOU F, WEN C H. Promotion or inhibition: how does environmental regulation affect agricultural green total factor productivity[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning, 2024: 1-16. ( 2024-12-17)[2025-07-23]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZGNZ2024121100A&dbname=CJFD&dbcode=CJFQ. | |
| [26] | 刘荣增, 何春. 环境规制对城镇居民收入不平等的门槛效应研究[J]. 中国软科学, 2021(8): 41-52. |
| LIU R Z, HE C. Study on the threshold effect of environmental regulation on income inequality of urban residents[J]. China Soft Science, 2021(8): 41-52. | |
| [27] | 陈庭强, 张情, 刘梦, 等. 环境规制下绿色金融驱动产业绿色发展的实证研究[J]. 南京工业大学学报(社会科学版), 2023, 22(3): 76-94, 114. |
| CHEN T Q, ZHANG Q, LIU M, et al. An empirical study on the green development of industry driven by green finance under environmental regulation[J]. Journal of Nanjing Tech University (Social Science Edition), 2023, 22(3): 76-94, 114. | |
| [28] | 王玉爽. 环境规制对绿色全要素生产率的影响: 基于环境分权和空间溢出视角[J]. 中国流通经济, 2023, 37(9): 63-79. |
| WANG Y S. Research on the impact of environmental regulation on green total factor productivity: based on the perspective of environmental decentralization and spatial spillover[J]. China Business and Market, 2023, 37(9): 63-79. | |
| [29] | 肖远飞, 吴允. 财政分权、环境规制与绿色全要素生产率: 基于动态空间杜宾模型的实证分析[J]. 华东经济管理, 2019, 33(11): 15-23. |
| XIAO Y F, WU Y. Fiscal decentralization, environmental regulation and green total factor productivity: an empirical analysis based on dynamic spatial Durbin model[J]. East China Economic Management, 2019, 33(11): 15-23. | |
| [30] | 李小平, 余东升, 余娟娟. 异质性环境规制对碳生产率的空间溢出效应: 基于空间杜宾模型[J]. 中国软科学, 2020(4): 82-96. |
| LI X P, YU D S, YU J J. Spatial spillover effect of heterogeneous environmental regulations on carbon productivity: spatial Durbin model[J]. China Soft Science, 2020(4): 82-96. | |
| [31] | 游达明, 欧阳乐茜. 环境规制对工业企业绿色创新效率的影响: 基于空间杜宾模型的实证分析[J]. 改革, 2020(5): 122-138. |
| YOU D M, OUYANG L Q. The impact of environmental regulation on the green innovation efficiency of industrial enterprises: an empirical analysis based on the spatial Durbin model[J]. Reform, 2020(5): 122-138. | |
| [32] | 李宇星, 刘寒波. 财政纵向失衡、地方政府行为与绿色全要素生产率[J]. 科学决策, 2024(10): 201-214. |
| LI Y X, LIU H B. Fiscal vertical imbalances, local government behavior and green total factor productivity[J]. Scientific Decision Making, 2024(10): 201-214. | |
| [33] | 黄倩, 李江城, 熊德平. 金融风险视角下金融杠杆对经济增长的影响研究[J]. 改革, 2021(4): 78-94. |
| HUANG Q, LI J C, XIONG D P. The Impact of Financial Leverage on Economic Growth from the Perspective of Financial Risk[J]. Reform, 2021(4): 78-94. | |
| [34] | 惠炜, 赵国庆. 环境规制与污染避难所效应: 基于中国省际数据的面板门槛回归分析[J]. 经济理论与经济管理, 2017(2): 23-33. |
| HUI W, ZHAO G Q. Environmental regulation and pollution haven: an Empirical Analysis Based on Panel Threshold Regression of Chinese Provincial Data[J]. Economic Theory and Business Management, 2017(2): 23-33. | |
| [35] | 何寿奎, 辜迪. 新基建、产业升级与绿色全要素生产率空间效应研究[J]. 生态经济, 2025, 41(3): 64-74. |
| HE S K, GU D. Research on spatial effects of new infrastructure, industrial upgrading and green total factor productivity[J]. Ecological Economy, 2025, 41(3): 64-74. | |
| [36] | 杜克锐, 欧阳晓灵, 郑泳薇. 环境规制是否促进我国城市的绿色经济增长?[J]. 统计研究, 2023, 40(12): 39-49. |
| DU K R, OUYANG X L, ZHENG Y W. Does environmental regulation promote green economic growth of Chinese Cities?[J]. Statistical Research, 2023, 40(12): 39-49. |
| [1] | ZHANG Liaoyuan, KONG Lingcheng. Digital rural construction, spatial spillover and common prosperity of farmers and rural areas—Based on the panel data of Yangtze river economic belt [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(9): 2304-2312. |
| [2] | XIA Longteng, FAN Fan. Impact of agricultural producer services on agricultural green total factor productivity [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1512-1520. |
| [3] | WANG Qiaoling, OU-YANG Yaoshu. Temporal and spatial evolution of agricultural green total factor productivity in Jiangxi Province [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(1): 213-219. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||