Journal of Zhejiang Agricultural Sciences ›› 2021, Vol. 62 ›› Issue (7): 1293-1298.DOI: 10.16178/j.issn.0528-9017.20210709
Previous Articles Next Articles
Received:
2021-05-19
Online:
2021-07-14
Published:
2021-07-11
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20210709
[1] |
GULL S, HAIDER Z, GU H W, et al. InDel marker based estimation of multi-gene allele contribution and genetic variations for grain size and weight in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2019, 20(19):4824.
DOI URL |
[2] | ZHANG L, MA B, BIAN Z, et al. Grain size selection using novel functional markers targeting 14 genes in rice[J]. Rice (New York, N Y), 2020, 13(1):63. |
[3] |
REN D Y, LI Y F, HE G H, et al. Multifloret spikelet improves rice yield[J]. New Phytologist, 2020, 225(6):2301-2306.
DOI URL |
[4] |
REN D Y, YU H P, RAO Y C, et al. ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield[J]. Plant Biotechnology Journal, 2018, 16(2):351-353.
DOI URL |
[5] | 陈小荣, 陈志彬, 贺浩华, 等. 水稻单株有效穗数主基因+多基因混合遗传分析[J]. 生物数学学报, 2011, 26(3):555-562. |
[6] | 曾博虹, 孙晓棠, 李玲锋, 等. 水稻粒重遗传研究进展[J]. 南方农业学报, 2016, 47(12):2033-2040. |
[7] | ZHANG P, ZHONG K Z, SHAHID M Q, et al. Association analysis in rice: from application to utilization[J]. Frontiers in Plant Science, 2016, 7:1202. |
[8] |
LIU M, TAN X L, YANG Y, et al. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping[J]. Plant Biotechnology Journal, 2020, 18(1):207-221.
DOI URL |
[9] |
谭贤杰, 吴子恺, 程伟东, 等. 关联分析及其在植物遗传学研究中的应用[J]. 植物学报, 2011, 46(1):108-118.
DOI |
[10] |
RUAN B P, SHANG L G, ZHANG B, et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020, 227(2):629-640.
DOI URL |
[11] |
SHI C L, REN Y L, LIU L L, et al. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiology, 2019, 180(1):381-391.
DOI URL |
[12] |
SAHU P K, MONDAL S, SAO R C, et al. Genome-wide association mapping revealed numerous novel genomic loci for grain nutritional and yield-related traits in rice (Oryza sativa L.) landraces[J]. 3 Biotech, 2020, 10(11):1-22.
DOI URL |
[13] | ZHU C S, GORE M, BUCKLER E S, et al. Status and prospects of association mapping in plants[J]. The Plant Genome, 2008, 1(1):5-20. |
[14] | 岳庆春, 傅迦得, 章辰飞, 等. 植物关联分析应用研究进展[J]. 江苏农业科学, 2019, 47(18):24-30. |
[15] |
FLINT-GARCIA S A, THORNSBERRY J M, BUCKLER E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology, 2003, 54:357-374.
DOI URL |
[16] |
NEALE D B, SAVOLAINEN O. Association genetics of complex traits in conifers[J]. Trends in Plant Science, 2004, 9(7):325-330.
DOI URL |
[17] |
YU J M, BUCKLER E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17(2):155-160.
DOI URL |
[18] |
GUPTA P K, RUSTGI S, KULWAL P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects[J]. Plant Molecular Biology, 2005, 57(4):461-485.
DOI URL |
[19] |
SINGLE R M, STRAYER N, THOMSON G, et al. Asymmetric linkage disequilibrium: Tools for assessing multiallelic LD[J]. Human Immunology, 2016, 77(3):288-294.
DOI URL |
[20] |
ZONDERVAN K T, CARDON L R. The complex interplay among factors that influence allelic association[J]. Nature Reviews Genetics, 2004, 5(2):89-100.
DOI URL |
[21] | 王荣焕, 王天宇, 黎裕. 关联分析在作物种质资源分子评价中的应用[J]. 植物遗传资源学报, 2007, 8(3):366-372. |
[22] |
GAUT B S, LONG A D. The lowdown on linkage disequilibrium[J]. The Plant Cell, 2003, 15(7):1502-1506.
DOI URL |
[23] | 杨小红, 严建兵, 郑艳萍, 等. 植物数量性状关联分析研究进展[J]. 作物学报, 2007, 33(4):523-530. |
[24] |
FLINT-GARCIA S A, THUILLET A C, YU J M, et al. Maize association population: a high-resolution platform for quantitative trait locus dissection[J]. The Plant Journal, 2005, 44(6):1054-1064.
DOI URL |
[25] |
XIONG H Y, YU J P, MIAO J L, et al. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging[J]. Plant Physiology, 2018, 178(1):451-467.
DOI URL |
[26] |
FENG Y, LU Q, ZHAI R R, et al. Genome wide association mapping for grain shape traits in indica rice[J]. Planta, 2016, 244(4):819-830.
DOI URL |
[27] |
ZHANG P, ZHONG K Z, ZHONG Z Z, et al. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L.)[J]. BMC Plant Biology, 2019, 19(1):1-12.
DOI URL |
[28] |
BENJAMINI Y, YEKUTIELI D. Quantitative trait Loci analysis using the false discovery rate[J]. Genetics, 2005, 171(2):783-790.
DOI URL |
[29] |
YANG J, YANG M, SU L, et al. Genome-wide association study reveals novel genetic loci contributing to cold tolerance at the germination stage in indica rice[J]. Plant Science, 2020, 301:110669.
DOI URL |
[30] |
LI M X, YEUNG J M Y, CHERNY S S, et al. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets[J]. Human Genetics, 2012, 131(5):747-756.
DOI URL |
[31] |
DUGGAL P, GILLANDERS E M, HOLMES T N, et al. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies[J]. BMC Genomics, 2008, 9(1):1-8.
DOI URL |
[32] |
LU Q, ZHANG M C, NIU X J, et al. Genetic variation and association mapping for 12 agronomic traits in indica rice[J]. BMC Genomics, 2015, 16:1067.
DOI URL |
[33] | BAI X F, ZHAO H, HUANG Y, et al. Genome-wide association analysis reveals different genetic control in panicle architecture between indica and Japonica rice[J]. The Plant Genome, 2016, 9(2): plantgenome2015. 11.0115. |
[34] |
ZHAO S Y, JANG S, LEE Y K, et al. Genetic basis of tiller dynamics of rice revealed by genome-wide association studies[J]. Plants, 2020, 9(12):1695.
DOI URL |
[35] |
HUANG X H, ZHAO Y, WEI X H, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1):32-39.
DOI URL |
[36] |
DUAN P G, XU J S, ZENG D L, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5):685-694.
DOI URL |
[37] |
MA X S, FENG F J, ZHANG Y, et al. A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population[J]. PLoS Genetics, 2019, 15(5):e1008191.
DOI URL |
[38] | 李万昌, 王俊伟, 余娇娇. 水稻分蘖基因的研究概况[J]. 作物杂志, 2012(3):19-22. |
[39] | 张继峰, 刘华东, 王敬国, 等. 粳稻分蘖数全基因组关联分析及候选基因的挖掘[J]. 中国农业科学, 2020, 53(16):3205-3213. |
[40] | XIE J Y, LI F M, KHAN N U, et al. Identifying natural genotypes of grain number per panicle in rice (Oryza sativa L.) by association mapping[J]. Genes & Genomics, 2019, 41(3):283-295. |
[41] |
TA K N, KHONG N G, HA T L, et al. A genome-wide association study using a Vietnamese Landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits[J]. BMC Plant Biology, 2018, 18(1):282.
DOI URL |
[42] |
ZHEN G, QIN P, LIU K Y, et al. Genome-wide dissection of heterosis for yield traits in two-line hybrid rice populations[J]. Scientific Reports, 2017, 7(1):7635.
DOI URL |
[43] |
HUANG X H, YANG S H, GONG J Y, et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis[J]. Nature Communications, 2015, 6:6258.
DOI URL |
[44] |
YU J P, XIONG H Y, ZHU X Y, et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15(1):28.
DOI URL |
[45] |
LU L, YAN W H, XUE W Y, et al. Evolution and association analysis of Ghd7 in rice[J]. PLoS One, 2012, 7(5):e34021.
DOI URL |
[46] | VEMIREDDY L R, KADAMBARI G, ESWAR REDDY G, et al. Uncovering of natural allelic variants of key yield contributing genes by targeted resequencing in rice (Oryza sativa L.)[J]. Scientific Reports , 2019, 9:8192. |
[47] |
ABBAI R, SINGH V K, NACHIMUTHU V V, et al. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains[J]. Plant Biotechnology Journal, 2019, 17(8):1612-1622.
DOI URL |
[48] |
YAN S, ZOU G H, LI S J, et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics, 2011, 123(7):1173-1181.
DOI URL |
[49] |
SINHA P, SINGH V K, SAXENA R K, et al. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.)[J]. Plant Biotechnology Journal, 2020, 18(12):2482-2490.
DOI URL |
[50] |
ZHOU J P, XIN X H, HE Y, et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties[J]. Plant Cell Reports, 2019, 38(4):475-485.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||