[1] |
杜慧, 关舒文, 王美艳, 等. 基于文献计量法的土壤退化研究现状及热点分析[J]. 中国水土保持, 2020(3): 33-36.
|
[2] |
张桃林, 李忠佩, 王兴祥. 高度集约农业利用导致的土壤退化及其生态环境效应[J]. 土壤学报, 2006, 43(5): 843-850.
|
[3] |
GUO L C, XIONG S F, CHEN Y L, et al. Total organic carbon content as an early warning indicator of soil degradation[J]. Science Bulletin, 2023, 68(2): 150-153.
|
[4] |
FERREIRA C S S, SEIFOLLAHI-AGHMIUNI S, DESTOUNI G, et al. Soil degradation in the European Mediterranean region: processes, status and consequences[J]. The Science of the Total Environment, 2022, 805: 150106.
|
[5] |
SCHLESINGER W H. Evidence from chronosequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348: 232-234.
|
[6] |
陈留美, 张甘霖. 土壤时间序列的构建及其在土壤发生研究中的意义[J]. 土壤学报, 2011, 48(2): 419-428.
|
[7] |
CREWS T E, KITAYAMA K, FOWNES J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii[J]. Ecology, 1995, 76(5): 1407-1424.
|
[8] |
黄成敏, 龚子同. 海南岛北部玄武岩上土壤发生研究 Ⅲ.元素地球化学特征[J]. 土壤学报, 2002, 39(5): 643-652.
|
[9] |
HUA H, SHI Y, WANG R H, et al. Phosphorus adsorption, availability, and potential loss characteristics in an ultisol-derived paddy soil chronosequence, using a stirred-flow chamber study[J]. Soil Science Society of America Journal, 2023, 87(3): 485-497.
|
[10] |
ZHANG H, YIN A J, YANG X H, et al. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats[J]. Geoderma, 2019, 352: 150-159.
|
[11] |
赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683-693.
|
[12] |
PRESCOTT J R, HUTTON J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2/3): 497-500.
|
[13] |
AITKEN M J. Thermoluminescence dating: past progress and future trends[J]. Nuclear Tracks and Radiation Measurements, 1982, 10(1/2): 3-6.
|
[14] |
GUILLAUME GUÉRIN, MERCIER N, ADAMIEC G. Dose-rate conversion factors: update[J]. Ancient Tl, 2018, 29: 5-8.
|
[15] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[16] |
范德江, 杨作升, 毛登, 等. 长江与黄河沉积物中黏土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4): 7-12.
|
[17] |
李秀平, 方咸林. 无为县土壤有机质状况及提升途径[J]. 现代农业科技, 2013(7): 242-243.
|
[18] |
张晨. 无为市2018—2019年度耕地质量现状及对策[J]. 安徽农学通报, 2021, 27(15): 134-136.
|
[19] |
安徽省土壤普查办公室. 安徽土壤[M]. 北京: 科学出版社, 1996.
|
[20] |
常新霞, 李文峰. 金沙江流域中上游土壤pH值空间分布特征[J]. 浙江农业科学, 2022, 63(8): 1900-1903.
|
[21] |
刘畅, 周明华, 张博文, 等. 张家口坝上地区土地利用方式对土壤理化性质的影响[J]. 土壤与作物, 2021, 10(3): 333-343.
|
[22] |
曹丽花, 郭祥坤, 连玉珍, 等. 信阳市不同土地利用方式下土壤团聚体及其有机碳分布[J]. 浙江农业科学, 2022, 63(4): 833-838.
|
[23] |
KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of paddy soils[J]. Geoderma, 2010, 157(1/2): 1-14.
|
[24] |
DING C F, DU S Y, MA Y B, et al. Changes in the pH of paddy soils after flooding and drainage: modeling and validation[J]. Geoderma, 2019, 337: 511-513.
|
[25] |
ZHANG H, WU P B, YIN A J, et al. Organic carbon and total nitrogen dynamics of reclaimed soils following intensive agricultural use in Eastern China[J]. Agriculture, Ecosystems & Environment, 2016, 235: 193-203.
|
[26] |
鲁如坤. 土壤磷素化学研究进展[J]. 土壤学进展, 1990, 18(6): 1-5, 19.
|