Journal of Zhejiang Agricultural Sciences ›› 2025, Vol. 66 ›› Issue (8): 1846-1852.DOI: 10.16178/j.issn.0528-9017.20240652
Previous Articles Next Articles
CHEN Yi1(), YAO Mengzhu2, LI Zhipeng1, WANG Shuang1, ZHANG Yiming2
Received:
2024-08-14
Online:
2025-08-11
Published:
2025-09-04
CLC Number:
CHEN Yi, YAO Mengzhu, LI Zhipeng, WANG Shuang, ZHANG Yiming. Detection and research progress of microplastics in aquatic products[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 1846-1852.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20240652
消解方式 | 生物组织部位 | 消解条件 | 生物组织消解率/% | 回收率/% | 备注 | 参考文献 |
---|---|---|---|---|---|---|
酸消解 | 贻贝软体组织 | HNO3∶HClO4(4∶1,V/V),室温,一整夜 | — | — | — | [ |
虎斑乌贼鳃、胃和肌肉 | HNO3∶H2O2(4∶1,V/V),75 ℃下磁力搅拌 | 100.00 | 96.29 | PP出现轻微形变 | [ | |
鱼体消化道组织 | HNO3∶H2O2(4∶1,V/V),25 ℃,12 h | — | 90.00 | — | [ | |
酶法消解 | 鲢鱼肌肉、胃、肠、肝脏、鳃丝、鳃弓以及白蛤软体部 | RIPA组织裂解液+蛋白酶K | (92.94±11.17) | — | — | [ |
水产品内脏和表皮 | 复合酶(0.10 U·mg-1蛋白酶、0.50 U·mg-1纤维素酶、0.30 U·mg-1脂肪酶、0.15 U·mg-1果胶酶) | — | — | — | [ | |
碱消解 | 斑马鱼和大型溞类 | 10%KOH,60 ℃,72 h | (96.30±0.50) | — | — | [ |
鱼体消化道组织 | 10%KOH,50 ℃, 180 r·min-1温育振荡6 h | (97.63±4.09) | — | — | [ | |
贻贝肌肉 | 10%KOH,40 ℃,36 h | 98.00~100.00 | — | — | [ | |
贝类消化系统 | 10%KOH,超声5 min后置于振荡培养箱消解24 h | 100.00 | — | — | [ | |
斑马鱼和大型溞类 | KOH∶NaClO(1∶1,V/V) | 100.00 | — | — | [ | |
H2O2溶液 | 贝类软组织 | 30%H2O2原液 | — | 100.00(PP和PET) 90.00(PVC) | — | [ |
鲢鱼肌肉、胃、肠、肝脏、鳃丝、鳃弓以及白蛤软体部 | 30%H2O2原液 | (65.95±14.93) | — | — | [ | |
贻贝软体组织 | 30%H2O2原液置于65 ℃的振荡培养箱中,在80 r·min-1下放置24 h,然后室温下放置24~48 h | — | 95.00 | 漂白微塑料 | [ |
Table 1 Different digestion methods
消解方式 | 生物组织部位 | 消解条件 | 生物组织消解率/% | 回收率/% | 备注 | 参考文献 |
---|---|---|---|---|---|---|
酸消解 | 贻贝软体组织 | HNO3∶HClO4(4∶1,V/V),室温,一整夜 | — | — | — | [ |
虎斑乌贼鳃、胃和肌肉 | HNO3∶H2O2(4∶1,V/V),75 ℃下磁力搅拌 | 100.00 | 96.29 | PP出现轻微形变 | [ | |
鱼体消化道组织 | HNO3∶H2O2(4∶1,V/V),25 ℃,12 h | — | 90.00 | — | [ | |
酶法消解 | 鲢鱼肌肉、胃、肠、肝脏、鳃丝、鳃弓以及白蛤软体部 | RIPA组织裂解液+蛋白酶K | (92.94±11.17) | — | — | [ |
水产品内脏和表皮 | 复合酶(0.10 U·mg-1蛋白酶、0.50 U·mg-1纤维素酶、0.30 U·mg-1脂肪酶、0.15 U·mg-1果胶酶) | — | — | — | [ | |
碱消解 | 斑马鱼和大型溞类 | 10%KOH,60 ℃,72 h | (96.30±0.50) | — | — | [ |
鱼体消化道组织 | 10%KOH,50 ℃, 180 r·min-1温育振荡6 h | (97.63±4.09) | — | — | [ | |
贻贝肌肉 | 10%KOH,40 ℃,36 h | 98.00~100.00 | — | — | [ | |
贝类消化系统 | 10%KOH,超声5 min后置于振荡培养箱消解24 h | 100.00 | — | — | [ | |
斑马鱼和大型溞类 | KOH∶NaClO(1∶1,V/V) | 100.00 | — | — | [ | |
H2O2溶液 | 贝类软组织 | 30%H2O2原液 | — | 100.00(PP和PET) 90.00(PVC) | — | [ |
鲢鱼肌肉、胃、肠、肝脏、鳃丝、鳃弓以及白蛤软体部 | 30%H2O2原液 | (65.95±14.93) | — | — | [ | |
贻贝软体组织 | 30%H2O2原液置于65 ℃的振荡培养箱中,在80 r·min-1下放置24 h,然后室温下放置24~48 h | — | 95.00 | 漂白微塑料 | [ |
[28] | LV L L, QU J H, YU Z H, et al. A simple method for detecting and quanjpgying microplastics utilizing fluorescent dyes-Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property[J]. Environmental Pollution, 2019, 255: 113283. |
[29] | KHUYEN V T K, DINH-VU L, ANH L H, et al. Investigation of microplastic contamination in Vietnamese sea salts based on Raman and Fourier-transform infrared spectroscopies[J]. EnvironmentAsia, 2021, 14(2): 1-13. |
[30] | GIANI D, BAINI M, GALLI M, et al. Microplastics occurrence in edible fish species (Mullus barbatus and Merluccius merluccius) collected in three different geographical sub-areas of the Mediterranean sea[J]. Marine Pollution Bulletin, 2019, 140: 129-137. |
[31] | ABIÑON B S F, CAMPOREDONDO B S, MERCADAL E M B, et al. Abundance and characteristics of microplastics in commercially sold fishes from Cebu Island, Philippines[J]. International Journal of Aquatic Biology, 2020, 8(6): 424-433. |
[32] | ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the laurentian great lakes[J]. Marine Pollution Bulletin, 2013, 77(1/2): 177-182. |
[33] | WANG Z M, WAGNER J, GHOSAL S, et al. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts[J]. Science of The Total Environment, 2017, 603: 616-626. |
[34] | 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学-上册[M]. 4版. 北京: 北京大学出版社, 2016. |
[35] | 白云, 胡光辉, 李琴梅, 等. 傅里叶变换红外光谱法在高分子材料研究中的应用[J]. 分析仪器, 2018(5): 26-29. |
[36] | 高楠, 孔祥峰, 岩刘, 等. 仪器分析技术在海洋微塑料研究中的应用[J]. 海洋环境科学, 2019, 38(2): 178-186. |
[37] | CINCINELLI A, SCOPETANI C, CHELAZZI D, et al. Microplastic in the surface waters of the ross sea (Antarctica): occurrence, distribution and characterization by FTIR[J]. Chemosphere, 2017, 175: 391-400. |
[38] | GULMINE J V, JANISSEK P R, HEISE H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing, 2002, 21(5): 557-563. |
[39] | PETERSEN M, YU Z L, LU X N. Application of Raman spectroscopic methods in food safety: a review[J]. Biosensors, 2021, 11(6): 187. |
[40] | YAMASHITA M, SASAKI H, MORIYAMA K. Vapor phase alkyne coating of pharmaceutical excipients: discrimination enhancement of Raman chemical imaging for tablets[J]. Journal of Pharmaceutical Sciences, 2015, 104(12): 4093-4098. |
[1] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
[2] | SMITH M, LOVE D C, ROCHMAN C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3): 375-386. |
[3] | 李爱峰, 李方晓, 邱江兵, 等. 水环境中微塑料的污染现状、生物毒性及控制对策[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 88-100. |
[4] | COLE M, LINDEQUE P, FILEMAN E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science & Technology, 2013, 47(12): 6646-6655. |
[5] | 丁金凤, 李景喜, 孙承君, 等. 双壳贝类消化系统中微塑料的分离鉴定及应用研究[J]. 分析化学, 2018, 46(5): 690-697. |
[6] | TENG J, WANG Q, RAN W, et al. Microplastic in cultured oysters from different coastal areas of China[J]. Science of The Total Environment, 2019, 653: 1282-1292. |
[7] | 李庆洁, 郑珊, 朱明亮, 等. 经济鱼类大菱鲆幼鱼对微塑料的摄食研究[J]. 环境保护, 2020, 48(23): 40-46. |
[8] | 李文华, 简敏菲, 余厚平, 等. 鄱阳湖流域饶河龙口入湖段优势淡水鱼类对微塑料及重金属污染物的生物累积[J]. 湖泊科学, 2020, 32(2): 357-369. |
[9] | 代朝猛, 李思, 段艳平, 等. 微塑料对水体中有机污染物迁移转化及生物有效性的影响研究进展[J]. 材料导报, 2020, 34(21): 21033-21037. |
[10] | LEE H S, AMARAKOON D, WEI C I, et al. Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells[J]. Food and Chemical Toxicology, 2021, 154: 112356. |
[11] | de WITTE B, DEVRIESE L, BEKAERT K, et al. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types[J]. Marine Pollution Bulletin, 2014, 85(1): 146-155. |
[12] | 严朝坚, 姚倩颖, 李旭艳, 等. 南海虎斑乌贼组织微塑料检测[J]. 齐齐哈尔大学学报(自然科学版), 2020, 36(5): 45-49. |
[13] | 孙浩然. 鱼体内微塑料检测方法研究[D]. 济南: 山东师范大学, 2018. |
[14] | 吴文楠, 高俊敏, 沈茜, 等. 生物体微塑料提取方法比选研究[J]. 中国环境科学, 2019, 39(10): 4343-4349. |
[15] | 邹亚丹, 徐擎擎, 张哿, 等. 6种消解方法对荧光测定生物体内聚苯乙烯微塑料的影响[J]. 环境科学, 2019, 40(1): 496-503. |
[16] | ENDERS K, LENZ R, BEER S, et al. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers[J]. ICES Journal of Marine Science, 2017, 74(1): 326-331. |
[17] | MUNNO K, HELM P A, JACKSON D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles[J]. Environmental Toxicology and Chemistry, 2018, 37(1): 91-98. |
[18] | DIGKA N, TSANGARIS C, TORRE M, et al. Microplastics in mussels and fish from the northern Ionian Sea[J]. Marine Pollution Bulletin, 2018, 135: 30-40. |
[19] | 屈明玥, 宋振耀, 陈钢, 等. 一种用于水产食品中微塑料的检测方法: CN108613957B[P]. 2021-05-07. |
[20] | 贺雨田, 杨颉, 隋海霞, 等. 基于显微光谱法的双壳类海洋生物中微塑料的检测方法研究[J]. 分析测试学报, 2021, 40(7): 1055-1061. |
[21] | 吕世伟, 周德庆, 刘楠, 等. 响应面法优化斑马鱼中微塑料分离、提取的工艺[J]. 渔业科学进展, 2021, 42(2): 87-95. |
[22] | LI J N, QU X Y, SU L, et al. Microplastics in mussels along the coastal waters of China[J]. Environmental Pollution, 2016, 214: 177-184. |
[23] | GONG J, XIE P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics[J]. Chemosphere, 2020, 254: 126790. |
[24] | 王元元, 李先国, 张大海. 沉积物中微塑料的提取方法研究[J]. 世界科技研究与发展, 2016, 38(1): 105-109. |
[25] | MAES T, JESSOP R, WELLNER N, et al. A rapid-screening approach to detect and quanjpgy microplastics based on fluorescent tagging with Nile Red[J]. Scienjpgic Reports, 2017, 7: 44501. |
[26] | SACKETT D L, WOLFF J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces[J]. Analytical Biochemistry, 1987, 167(2): 228-234. |
[27] | SHIM W J, SONG Y K, HONG S H, et al. Idenjpgication and quanjpgication of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113(1/2): 469-476. |
[41] | YASEEN T, SUN D W, CHENG J H. Raman imaging for food quality and safety evaluation: fundamentals and applications[J]. Trends in Food Science & Technology, 2017, 62: 177-189. |
[42] | 薛庆生, 卢继涛, 杨柏, 等. 基于空间外差差分拉曼光谱技术的近海沉积物中微塑料的快速检测系统与检测方法: CN111521599A[P]. 2020-08-11. |
[43] | PETERS C A, HENDRICKSON E, MINOR E C, et al. Pyr-GC/MS analysis of microplastics extracted from the stomach content of benthivore fish from the Texas Gulf Coast[J]. Marine Pollution Bulletin, 2018, 137: 91-95. |
[44] | FISCHER M, SCHOLZ-BÖTTCHER B M. Simultaneous trace idenjpgication and quanjpgication of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry[J]. Environmental Science & Technology, 2017, 51(9): 5052-5060. |
[45] | HERMABESSIERE L, HIMBER C, BORICAUD B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the idenjpgication of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6663-6676. |
[46] | HUANG H, QURESHI J U, LIU S C, et al. Hyperspectral imaging as a potential online detection method of microplastics[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 754-763. |
[47] | ZHANG Y T, WANG X, SHAN J J, et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish[J]. Environmental Science & Technology, 2019, 53(9): 5151-5158. |
[48] | PIARULLI S, SCIUTTO G, OLIVERI P, et al. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method[J]. Chemosphere, 2020, 260: 127655. |
[49] | LEE E H, LEE S, CHANG Y, et al. Simple screening of microplastics in bottled waters and environmental freshwaters using a novel fluorophore[J]. Chemosphere, 2021, 285: 131406. |
[50] | OKOFFO E D, RIBEIRO F, O’BRIEN J W, et al. Idenjpgication and quanjpgication of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography-mass spectrometry[J]. Science of The Total Environment, 2020, 715: 136924. |
[51] | ZHU C M, KANAYA Y, TSUCHIYA M, et al. Optimization of a hyperspectral imaging system for rapid detection of microplastics down to 100 μm[J]. MethodsX, 2020, 8: 101175. |
[1] | PAN Qianxuan, GUO Liang, GUO Jingjie, ZOU Lei, ZHENG Yining. Effects of microplastics on the growth and cadmium accumulation of Brassica chinensis L. [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 1882-1890. |
[2] | ZHENG Yining, GUO Jingjie, SUN Junkai, SONG Lulu, ZHOU Huajun. Research progress on the impact of soil microplastics on the absorption and accumulation of cadmium by plants [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(8): 2025-2031. |
[3] | LU Jiahuan, HE Tengfei, WANG Qiong, WANG Jiatong. Development status and revitalization measures of the Republic of Korea's aquatic products digital trade and their implications to Zhejiang [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(5): 1244-1249. |
[4] | WANG Zhen, LU Wen, LI Xiutong, JIANG Youyuan, YU Zhouhong, SUN Wenshan. Design and application of intelligent monitoring system for rapid detection of pesticide residues in fruits and vegetables [J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(2): 449-456. |
[5] | CHEN Xingxing. Advances in pretreatment methods for heavy metals in aquatic products [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(9): 2170-2173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||