浙江农业科学 ›› 2023, Vol. 64 ›› Issue (6): 1317-1322.DOI: 10.16178/j.issn.0528-9017.20221192
赵德风1,2(), 陈然1, 肖国强1,2, 滕爽爽1,*(
)
收稿日期:
2022-11-23
出版日期:
2023-06-11
发布日期:
2023-06-07
通讯作者:
滕爽爽,E-mail:188175998@qq.com。
作者简介:
赵德风(1995—),女,硕士研究生,研究方向为滩涂贝类遗传育种,E-mail:2317910461@qq.com。
基金资助:
Received:
2022-11-23
Online:
2023-06-11
Published:
2023-06-07
摘要:
为了确定泥蚶转录因子c-Myc(Tgc-Myc)与下游ATP结合盒转运蛋白ABCA3(TgABCA3)基因启动子的结合关系。利用在线生物信息学网站预测以及凝胶电泳迁移(electrophoretic mobility shift assay,EMSA)和染色质免疫共沉淀(chromatin immunoprecipitation assay,ChIP)技术,对Tgc-Myc与TgABCA3启动子的结合位点进行分析。结果显示,TgABCA3启动子上的E-box顺式作用元件位于-40~-35 bp,Tgc-Myc能够与该序列特异性结合。转录因子Tgc-Myc通过调控TgABCA3基因转录,从而参与泥蚶应对重金属Cd胁迫的响应机制。
中图分类号:
赵德风, 陈然, 肖国强, 滕爽爽. 泥蚶转录因子c-Myc与下游ATP结合盒转运蛋白基因ABCA3启动子的结合鉴定[J]. 浙江农业科学, 2023, 64(6): 1317-1322.
反应组分 | 阴性对照 反应组 | 结合 反应组 | 探针 冷竞争 反应组 | 突变探针 的冷竞争 反应组 | 特异性 抗体组 |
---|---|---|---|---|---|
无菌水 | 11 | 9 | 7 | 7 | 7 |
10×binding buffer | 2 | 2 | 2 | 2 | 2 |
1 g·L-1 Poly(dI.dC) | 1 | 1 | 1 | 1 | 1 |
50%甘油 | 1 | 1 | 1 | 1 | 1 |
1% NP-40 | 1 | 1 | 1 | 1 | 1 |
1 mol·L-1 KCl | 1 | 1 | 1 | 1 | 1 |
100 mmol·L-1 MgCl2 | 1 | 1 | 1 | 1 | 1 |
200 mmol·L-1 EDTA | 1 | 1 | 1 | 1 | 1 |
未标记特异性探针 | 0 | 0 | 2 | 0 | 0 |
未标记突变探针 | 0 | 0 | 0 | 2 | 0 |
核蛋白 | 0 | 2 | 2 | 2 | 2 |
目标特异性抗体 | 0 | 0 | 0 | 0 | 2 |
生物素标记特异性探针 | 1 | 1 | 1 | 1 | 1 |
总体积 | 20 | 20 | 20 | 20 | 20 |
表1 凝胶电泳迁移DNA-蛋白质结合反应体系 单位:μL
反应组分 | 阴性对照 反应组 | 结合 反应组 | 探针 冷竞争 反应组 | 突变探针 的冷竞争 反应组 | 特异性 抗体组 |
---|---|---|---|---|---|
无菌水 | 11 | 9 | 7 | 7 | 7 |
10×binding buffer | 2 | 2 | 2 | 2 | 2 |
1 g·L-1 Poly(dI.dC) | 1 | 1 | 1 | 1 | 1 |
50%甘油 | 1 | 1 | 1 | 1 | 1 |
1% NP-40 | 1 | 1 | 1 | 1 | 1 |
1 mol·L-1 KCl | 1 | 1 | 1 | 1 | 1 |
100 mmol·L-1 MgCl2 | 1 | 1 | 1 | 1 | 1 |
200 mmol·L-1 EDTA | 1 | 1 | 1 | 1 | 1 |
未标记特异性探针 | 0 | 0 | 2 | 0 | 0 |
未标记突变探针 | 0 | 0 | 0 | 2 | 0 |
核蛋白 | 0 | 2 | 2 | 2 | 2 |
目标特异性抗体 | 0 | 0 | 0 | 0 | 2 |
生物素标记特异性探针 | 1 | 1 | 1 | 1 | 1 |
总体积 | 20 | 20 | 20 | 20 | 20 |
引物名称 | 引物序列(5'-3') | 扩增位置/bp |
---|---|---|
ABCA3-1F | GTCTCGCTCCTCTACCCAC | -1 955~-1 415 |
ABCA3-1R | TAACTTTACCGATCTCCTGTTTGTG | |
ABCA3-2F | CCTCTACCCACACAGATTC | -1 235~-815 |
ABCA3-2R | AAATGGTAGAGGAGAGGGAC | |
ABCA3-3F | CAGGTAACCAACACAGG | -450~-10 |
ABCA3-3R | TTGGGATGTCGAATATGC |
表2 TgABCA3基因的qRT-PCR引物序列
引物名称 | 引物序列(5'-3') | 扩增位置/bp |
---|---|---|
ABCA3-1F | GTCTCGCTCCTCTACCCAC | -1 955~-1 415 |
ABCA3-1R | TAACTTTACCGATCTCCTGTTTGTG | |
ABCA3-2F | CCTCTACCCACACAGATTC | -1 235~-815 |
ABCA3-2R | AAATGGTAGAGGAGAGGGAC | |
ABCA3-3F | CAGGTAACCAACACAGG | -450~-10 |
ABCA3-3R | TTGGGATGTCGAATATGC |
软件 | 起始位点 | 终止位点 | E值 | 评分 |
---|---|---|---|---|
PROMO | -43(+) | -35(+) | 0.51 | 68.55 |
LASAGNA-Search2.0 | -40(+) | -35(+) | 0.49 | 67.75 |
表3 PROMO和LASAGNA-Search2.0网站预测的Tgc-Myc与TgABCA3结合位点
软件 | 起始位点 | 终止位点 | E值 | 评分 |
---|---|---|---|---|
PROMO | -43(+) | -35(+) | 0.51 | 68.55 |
LASAGNA-Search2.0 | -40(+) | -35(+) | 0.49 | 67.75 |
[1] | TANG Y, ZHOU W S, SUN S G, et al. Immunotoxicity and neurotoxicity of bisphenol A and microplastics alone or in combination to a bivalve species, Tegillarca granosa[J]. Environmental Pollution, 2020, 265(Pt A): 115115. |
[2] | LIU G X, CHAI X L, SHAO Y Q, et al. Specific death symptoms and organic lesions of blood clam Tegillarca granosa in acute copper, zinc, lead and cadmium exposures[J]. Advanced Materials Research, 2012, 518/519/520/521/522/523: 490-493. |
[3] | ZHANG Y, CHEN C F, SHEN W L, et al. Comparative transcriptome analysis reveals the biological mechanism of selective cadmium enrichment in Tegillarca granosa[J]. Aquaculture Reports, 2021, 21: 100960. |
[4] | BAO Y B, LIU X, ZHANG W W, et al. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model[J]. Scientific Reports, 2016, 6(1): 1-11. |
[5] | GENCHI G, SINICROPI M S, LAURIA G, et al. The effects of cadmium toxicity[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 3782. |
[6] | KUMAR S, SHARMA A. Cadmium toxicity: effects on human reproduction and fertility[J]. Reviews on Environmental Health, 2019, 34(4): 327-338. |
[7] | 杨瑞瑞. 镉暴露对斑马鱼早期胚胎发育和关键生殖调控基因表达的影响[D]. 太原: 山西大学, 2019. |
[8] | 顾海龙. Cd、Pb、Hg暴毒下泥蚶的分子生态毒理学研究[D]. 上海: 上海海洋大学, 2013. |
[9] | 吴林德, 林志华, 沈伟良, 等. Cd2+、Pb2+、Hg2+对泥蚶鳃及消化腺显微结构和超微结构的影响[J]. 海洋湖沼通报, 2015(2): 45-52. |
[10] | 陈彩芳, 沈伟良, 霍礼辉, 等. 重金属离子Cd2+对泥蚶鳃及肝脏细胞显微和超微结构的影响[J]. 水产学报, 2012, 36(4): 522-528. |
[11] | HUANG Y, TANG H C, JIN J Y, et al. Effects of waterborne cadmium exposure on its internal distribution in Meretrix meretrix and detoxification by metallothionein and antioxidant enzymes[J]. Frontiers in Marine Science, 2020, 7: 502. |
[12] | SHI W, GUAN X F, HAN Y, et al. Waterborne Cd2+ weakens the immune responses of blood clam through impacting Ca2+ signaling and Ca2+ related apoptosis pathways[J]. Fish & Shellfish Immunology, 2018, 77: 208-213. |
[13] | 王稷, 李晔, 瞿洋, 等. 地衣芽孢杆菌(Bacillus licheniformis)对镉胁迫下泥蚶(Tegillarca granosa)的抗氧化酶活性和免疫相关基因表达的影响[J]. 海洋与湖沼, 2014, 45(5): 1058-1063. |
[14] | SUN J X, WANG S C, CAO Y R, et al. Cadmium exposure induces apoptosis, inflammation and immunosuppression through CYPs activation and antioxidant dysfunction in common carp neutrophils[J]. Fish&Shellfish Immunology, 2020, 99: 284-290. |
[15] | PAOLINI A, BALDASSARRE A, DEL GAUDIO I, et al. Structural features of the ATP-binding cassette (ABC) transporter ABCA3[J]. International Journal of Molecular Sciences, 2015, 16(8): 19631-19644. |
[16] | 何宇臻, 王辉, 方家豪, 等. ABC转运蛋白家族介导的中药-化药相互作用研究进展[J]. 药学学报, 2021, 56(7): 1778-1788. |
[17] | MOURER T, NORMANT V, LABBÉ S. Heme assimilation in Schizosaccharomyces pombe requires cell-surface-anchored protein Shu1 and vacuolar transporter Abc3[J]. Journal of Biological Chemistry, 2017, 292(12): 4898-4912. |
[18] | 马云芳, 梁国鲁, 裴得胜, 等. ABC转运蛋白研究的新进展[J]. 生物技术通报, 2008(5): 35-41. |
[19] | CHOI Y H, YU A M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development[J]. Current Pharmaceutical Design, 2014, 20(5): 793-807. |
[20] | SZAKÁCS G, VÁRADI A, ÖZVEGY-LACZKA C, et al. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox)[J]. Drug Discovery Today, 2008, 13(9/10): 379-393. |
[21] | KHAN N, YOU F M, DATLA R, et al. Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.)[J]. BMC Genomics, 2020, 21(1): 722. |
[22] | JEONG C B, KIM H S, KANG H M, et al. Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus)[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21: 17-26. |
[23] | FENG D D, LI Q, YU H, et al. Comparative transcriptome analysis of the Pacific oyster Crassostrea gigas characterized by shell colors: identification of genetic bases potentially involved in pigmentation[J]. PLoS One, 2015, 10(12): e0145257. |
[24] | ALA M. Target c-Myc to treat pancreatic cancer[J]. Cancer Biology & Therapy, 2022, 23(1): 34-50. |
[25] | KATO G J, LEE W M, CHEN L L, et al. Max: functional domains and interaction with c-Myc[J]. Genes & Development, 1992, 6(1): 81-92. |
[26] | LÜSCHER B. Function and regulation of the transcription factors of the Myc/Max/Mad network[J]. Gene, 2001, 277(1/2): 1-14. |
[27] | WALHOUT A J M, GUBBELS J M, BERNARDS R, et al. C-myc/max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene[J]. Nucleic Acids Research, 1997, 25(8): 1493-1501. |
[28] | FIORESI R, DEMURTAS P, PERINI G. Deep learning for MYC binding site recognition[J]. Frontiers in Bioinformatics, 2022, 2: 1015993. |
[29] | PRIJIC S, CHANG J T. ABCA1 expression is upregulated in an EMT in breast cancer cell lines via MYC-mediated de-repression of its proximal ebox element[J]. Biomedicines, 2022, 10(3): 581. |
[30] | DANG C V, O'DONNELL K A, ZELLER K I, et al. The c-Myc target gene network[J]. Seminars in Cancer Biology, 2006, 16(4): 253-264. |
[31] | PORRO A, HABER M, DIOLAITI D, et al. Direct and coordinate regulation of ATP-binding cassette transporter genes by myc factors generates specific transcription signatures that significantly affect the chemoresistance phenotype of cancer cells[J]. Journal of Biological Chemistry, 2010, 285(25): 19532-19543. |
[32] | 俞今晶, 来纯云. c-Myc在肿瘤中的表达及功能[J]. 国际肿瘤学杂志, 2017, 44(4): 278-280. |
[33] | CHEN B J, WU Y L, TANAKA Y, et al. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics[J]. International Journal of Biological Sciences, 2014, 10(10): 1084-1096. |
[34] | DANG C V, RESAR L M S, EMISON E, et al. Function of the c-myc oncogenic transcription factor[J]. Experimental Cell Research, 1999, 253(1): 63-77. |
[35] | 韦光辉, 左其生, 李东, 等. 徐淮山羊c-Myc基因启动子的克隆及其功能的初步分析[J]. 畜牧兽医学报, 2014, 45(4): 533-540. |
[36] | 李宗访, 滕爽爽, 张炯明, 等. Cd胁迫对泥蚶Cd积累及相关生理代谢的影响[J]. 中国水产科学, 2021, 28(11): 1436-1446. |
[37] | 李宗访. ABCA3转运子在泥蚶镉富集中的表达特征与功能研究[D]. 舟山: 浙江海洋大学, 2021. |
[38] | ZHAO D F, HU G Y, CHEN R, et al. Molecular cloning, characterization, and tissue distribution of c-Myc from blood clam Tegillarca granosa and its role in cadmium-induced stress response[J]. Gene, 2022, 834: 146611. |
[39] | KRISHNAN N, YADEV I, ANANDAN J, et al. Pregnancy hormone mediated tumorigenesis in BRCA1 defective breast cancers[J]. The FASEB Journal, 2022, 36. |
[40] | CARRASQUILLO-DONES E, CESAR B, BARRERIRO A, et al. Protein-DNA interactomes of NKX2-5 and TBX5 mutants identified in congenital heart defects[J]. The FASEB Journal, 2022, 36. |
[41] | HU T T, CHEN F, CHEN D, et al. DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis[J]. Cellular Signalling, 2022, 96: 110352. |
[42] | QIN Y N, MA X P, GUO C, et al. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway[J]. Cancer Cell International, 2022, 22(1): 86. |
[43] | 何蔷. 肺炎克雷伯菌转录调控子CRP对KP10324基因的转录调控研究[D]. 重庆: 重庆医科大学, 2019. |
[44] | 王超. 米曲霉基因组水平的蛋白质和DNA相互作用研究[D]. 广州: 华南理工大学, 2015. |
[45] | LOUCHE A, SALCEDO S P, BIGOT S. Protein-protein interactions: pull-down assays[M]//Methods in Molecular Biology. New York, NY: Springer New York, 2017: 247-255. |
[46] | JAIN A, LIU R J, XIANG Y K, et al. Single-molecule pull-down for studying protein interactions[J]. Nature Protocols, 2012, 7(3): 445-452. |
[47] | 金巧智, 叶文蔚, 陶宝鸿, 等. 双荧光素酶报告系统鉴定miRNA-3133对200 kD黏着斑激酶家族相互作用蛋白基因的靶向调控作用[J]. 中国卫生检验杂志, 2021, 31(4): 469-472. |
[48] | 范嗣刚, 赵超, 王鹏飞, 等. 华贵栉孔扇贝MSTN基因启动子的功能分析[J]. 南方水产科学, 2019, 15(1): 63-68. |
[49] | 邓海游, 贾亚, 张阳. 蛋白质结构预测[J]. 物理学报, 2016, 65(17): 176-186. |
[50] | 杨春玲, 陈慧芳, 彭敏, 等. 凡纳滨对虾转录组测序分析及肌肉生长发育相关基因的筛选[J]. 南方农业学报, 2021, 52(9): 2319-2328. |
[51] | 陶华, 唐旭清. 蛋白质序列的聚类结构分析[J]. 生物信息学, 2012, 10(4): 269-273, 279. |
[52] | 王浩, 王春晴, 陈瑞冰. 结合亲和质谱与生物信息学分析构建TP53BP1的蛋白相互作用网络[J]. 中国科学: 生命科学, 2018, 48(2): 232-239. |
[53] | DELATTRE P, MONTAGNE M, LAVIGNE P. Methods of expression, purification, and preparation of the c-myc b-HLH-LZ for its biophysical characterization[M]// The Myc Gene. New York: Humana, 2021: 13-19. |
[54] | ELBADAWY M, USUI T, YAMAWAKI H, et al. Emerging roles of C-myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer[J]. International Journal of Molecular Sciences, 2019, 20(9): 2340. |
[55] | JONES R M, BRANDA J, JOHNSTON K A, et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc[J]. Molecular and Cellular Biology, 1996, 16(9): 4754-4764. |
[56] | FUJII M, LYAKH L A, BRACKEN C, et al. SNIP1 is a candidate modifier of the transcriptional activity of c-myc on E box-dependent target genes[J]. Molecular Cell, 2006, 24(5): 771-783. |
[57] | HAMMER S, TO K W, YOO Y G, et al. Hypoxic suppression of the cell cycle gene CDC25A in tumor cells[J]. Cell Cycle, 2007, 6(15): 1919-1926. |
[58] | BOUCHARD C, DITTRICH O, KIERMAIER A, et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter[J]. Genes & Development, 2001, 15(16): 2042-2047. |
[59] | WU Z X, GUO W, YANG L B, et al. Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1[J]. Insect Biochemistry and Molecular Biology, 2018, 102: 1-10. |
[60] | PORRO A, IRACI N, SOVERINI S, et al. C-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34+ hematopoietic progenitor cells[J]. Molecular Cancer Research: MCR, 2011, 9(8): 1054-1066. |
[61] | SHI D Y, DING J H, XIE S Q, et al. Myocardin/microRNA-30a/Beclin1 signaling controls the phenotypic modulation of vascular smooth muscle cells by regulating autophagy[J]. Cell Death & Disease, 2022, 13(2): 1-11. |
[62] | ZHANG X M, NIU W X, MU M L, et al. Long non-coding RNA LPP-AS2 promotes glioma tumorigenesis via miR-7-5p/EGFR/PI3K/AKT/c-MYC feedback loop[J]. Journal of Experimental & Clinical Cancer Research: CR, 2020, 39(1): 196. |
[63] | 李素云, 吴冬梅, 刘慧晴, 等. 鼻咽癌STGC3基因转录调控元件分析与鉴定[J]. 解剖学杂志, 2020, 43(6): 487-491, 516. |
[1] | 陈琳, 胡高宇, 蔡逸龙, 肖国强, 蔡景波, 张翔. 水温和余氯耦合条件下泥蚶内脏团微生物群落组成动态[J]. 浙江农业科学, 2023, 64(6): 1323-1331. |
[2] | 李敏, 许凯伦, 吴越, 周朝生, 陆荣茂, 胡园. 贮藏温度对泥蚶存活率和营养成分的影响[J]. 浙江农业科学, 2020, 61(4): 788-790. |
[3] | 李敏, 郑伊诺, 许凯伦, 曾国权, 陆荣茂, 胡园. 盐度胁迫对泥蚶存活率及3种酶活力的影响[J]. 浙江农业科学, 2018, 59(4): 650-653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||