[1] |
ZORBAS D, ABDELFADEEL K, KOTZANIKOLAOU P, et al. TS-LoRa: time-slotted LoRaWAN for the Industrial Internet of Things[J]. Computer Communications, 2020, 153: 1-10.
|
[2] |
彭焘. 互联互通理念下跨境电商物流发展策略研究[J]. 商业经济, 2020(2): 50-51, 88.
|
[3] |
LUSIKKA T, KINNUNEN T K, KOSTIAINEN J. Public transport innovation platform boosting intelligent transport system value chains[J]. Utilities Policy, 2020, 62: 100998.
|
[4] |
成福伟. 发达国家现代农业园区的发展模式及借鉴[J]. 世界农业, 2017(1): 13-17.
|
[5] |
姚於康. 国外设施农业智能化发展现状、基本经验及其借鉴[J]. 江苏农业科学, 2011, 39(1): 3-5.
|
[6] |
唐珂. 国外农业物联网技术发展及对我国的启示[J]. 中国科学院院刊, 2013, 28(6): 700-707.
|
[7] |
PAWLOWSKI A, GUZMAN J L, RODRÍGUEZ F, et al. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control[J]. Sensors, 2009, 9(1): 232-252.
|
[8] |
PAHUJA R, VERMA H K, UDDIN M. A wireless sensor network for greenhouse climate control[J]. IEEE Pervasive Computing, 2013, 12(2): 49-58.
|
[9] |
SRBINOVSKA M, GAVROVSKI C, DIMCEV V, et al. Environmental parameters monitoring in precision agriculture using wireless sensor networks[J]. Journal of Cleaner Production, 2015, 88: 297-307.
|
[10] |
AIELLO G, GIOVINO I, VALLONE M, et al. A decision support system based on multisensor data fusion for sustainable greenhouse management[J]. Journal of Cleaner Production, 2018, 172: 4057-4065.
|
[11] |
FERENTINOS K P, KATSOULAS N, TZOUNIS A, et al. Wireless sensor networks for greenhouse climate and plant condition assessment[J]. Biosystems Engineering, 2017, 153: 70-81.
|
[12] |
PARK D H, KANG B J, CHO K R, et al. A study on greenhouse automatic control system based on wireless sensor network[J]. Wireless Personal Communications, 2011, 56(1): 117-130.
|
[13] |
PARK D H, PARK J W. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention[J]. Sensors, 2011, 11(4): 3640-3651.
|
[14] |
KATSOULAS N, FERENTINOS K P, TZOUNIS A, et al. Spatially distributed greenhouse climate control based on wireless sensor network measurements[J]. Acta Horticulturae, 2017(1154): 111-120.
|
[15] |
ROWSHON M K, DLAMINI N S, MOJID M A, et al. Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme[J]. Agricultural Water Management, 2019, 216: 138-152.
|
[16] |
BIABI H, ABDANAN MEHDIZADEH S, SALEHI SALMI M. Design and implementation of a smart system for water management of lilium flower using image processing[J]. Computers and Electronics in Agriculture, 2019, 160: 131-143.
|
[17] |
李莉莉. 华东型连栋塑料温室环境智能控制系统的研究[D]. 上海: 上海交通大学, 2013.
|
[18] |
赵立安, 李修华, 周永华, 等. 基于农业物联网的火龙果生长环境大数据分析[J]. 节水灌溉, 2018(3): 58-62.
|
[19] |
廖建尚. 基于物联网的温室大棚环境监控系统设计方法[J]. 农业工程学报, 2016, 32(11): 233-243.
|
[20] |
包志炎, 王学斌, 张海波, 等. 基于物联网和云架构的渠灌闸门智能控制系统[J]. 农业机械学报, 2017, 48(11): 222-228.
|
[21] |
葛文杰, 赵春江. 农业物联网研究与应用现状及发展对策研究[J]. 农业机械学报, 2014, 45(7): 222-230, 277.
|
[22] |
李道亮, 杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018, 49(1): 1-20.
|
[23] |
余欣荣. 关于发展农业物联网的几点认识[J]. 中国科学院院刊, 2013, 28(6): 679-685.
|
[24] |
徐增祥, 金涛, 田洪暄. 农业物联网设备在日光温室中的应用及推广模式[J]. 天津农业科学, 2018, 24(11): 38-41, 61.
|
[25] |
齐飞, 李恺, 李邵, 等. 世界设施园艺智能化装备发展对中国的启示研究[J]. 农业工程学报, 2019, 35(2): 183-195.
|
[26] |
GUSTA L V, TRISCHUK R, WEISER C J. Plant cold acclimation: the role of abscisic acid[J]. Journal of Plant Growth Regulation, 2005, 24(4): 308-318.
|
[27] |
LI S X, WANG Z H, LI S Q, et al. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China[J]. Agricultural Water Management, 2013, 116: 39-49.
|
[28] |
VIAL L K, LEFROY R D B, FUKAI S. Application of mulch under reduced water input to increase yield and water productivity of sweet corn in a lowland rice system[J]. Field Crops Research, 2015, 171: 120-129.
|
[29] |
JIN S S, WANG Y K, SHI L G, et al. Effects of pruning and mulching measures on annual soil moisture, yield, and water use efficiency in jujube (Ziziphus jujube Mill.) plantations[J]. Global Ecology and Conservation, 2018, 15: e00406.
|