
浙江农业科学 ›› 2025, Vol. 66 ›› Issue (12): 3036-3043.DOI: 10.16178/j.issn.0528-9017.20240443
收稿日期:2024-05-30
出版日期:2025-12-11
发布日期:2025-12-17
通讯作者:
李晓娟(1985—),女,安徽芜湖人,研究员,博士,主要从事农林病虫害防控研究工作,E-mail: lixiaojuan010@126.com。
作者简介:崔灿(1997—),女,安徽淮南人,实习研究员,硕士,主要从事农林生态研究工作,E-mail: cuican630@163.com。
基金资助:
CUI Can1,2(
), LI Xiaojuan1,2,*(
)
Received:2024-05-30
Online:2025-12-11
Published:2025-12-17
摘要:
RNA干扰(RNAi)是一种利用双链RNA或小干扰RNA特异性降解或抑制靶基因mRNA表达的生物过程。近年来,RNAi凭借其特异性强、选择性高的优势,广泛应用于农林病虫害研究和防治中。本文系统总结了RNAi在农林病虫害防治中的几种主要应用方式,包括喷雾诱导基因沉默、病毒诱导基因沉默、寄主诱导基因沉默以及纳米载体递送介导的基因沉默;概括了RNAi在农林病虫害防治领域中的最新研究进展与应用现状;针对当前RNAi在农林病虫害防治领域中的突出问题进行了探讨,并提出相应的建议;最后,对RNAi在农林病虫害防控中的未来发展方向作出了展望。基于RNAi的农林病虫害防治策略有望为农林作物保护注入新的活力,推动农业与林业的可持续发展。
中图分类号:
崔灿, 李晓娟. RNA干扰在农林病虫害防治中的研究与应用[J]. 浙江农业科学, 2025, 66(12): 3036-3043.
CUI Can, LI Xiaojuan. Research and application of RNA interference in the prevention and control of agricultural and forestry pests and diseases[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(12): 3036-3043.
| [1] | HANNON G J, ROSSI J J. Unlocking the potential of the human genome with RNA interference[J]. Nature, 2004, 431(7006): 371-378. |
| [2] | ALMEIDA R, ALLSHIRE R C. RNA silencing and genome regulation[J]. Trends in Cell Biology, 2005, 15(5): 251-258. |
| [3] | FIRE A, XU S Q, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. |
| [4] | 崔世权, 侯敢, 黄迪南. siRNA诱导基因沉默复合物(RISC)的研究[J]. 基因组学与应用生物学, 2017, 36(7): 2799-2803. |
| [5] | XU J, WANG X F, CHEN P, et al. RNA interference in moths: mechanisms, applications, and progress[J]. Genes, 2016, 7(10): 88. |
| [6] | ZHANG J, KHAN S A, HECKEL D G, et al. Next-generation insect-resistant plants: RNAi-mediated crop protection[J]. Trends in Biotechnology, 2017, 35(9): 871-882. |
| [7] | MAHALLE R M, MOTA-SANCHEZ D, PITTENDRIGH B R, et al. miRNA dynamics for pest management: implications in insecticide resistance[J]. Insects, 2024, 15(4): 238. |
| [8] | ELLIS K L, ANDERSON J M, YONOW T, et al. Nut bush pesticide limits: urgent need for a comprehensive strategy to address current and emerging insect pests and insecticide options in the Australian macadamia industry[J]. Pest Management Science, 2024, 80(7): 3088-3097. |
| [9] | JORGENSEN R. Altered gene expression in plants due to trans interactions between homologous genes[J]. Trends in Biotechnology, 1990, 8: 340-344. |
| [10] | COGONI C, ROMANO N, MACINO G. Suppression of gene expression by homologous transgenes[J]. Antonie Van Leeuwenhoek, 1994, 65(3): 205-209. |
| [11] | GUO S, KEMPHUES K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-620. |
| [12] | CHRISTIAENS O, PETEK M, SMAGGHE G, et al. The use of nanocarriers to improve the efficiency of RNAi-based pesticides in agriculture[M]// Nanopesticides. Cham: Springer International Publishing, 2020: 49-68. |
| [13] | KOO J, ZHU G H, PALLI S R. CRISPR-Cas9 mediated dsRNase knockout improves RNAi efficiency in the fall armyworm[J]. Pesticide Biochemistry and Physiology, 2024, 200: 105839. |
| [14] | WYTINCK N, MANCHUR C L, LI V H, et al. dsRNA uptake in plant pests and pathogens: insights into RNAi-based insect and fungal control technology[J]. Plants, 2020, 9(12): 1780. |
| [15] | MAT JALALUDDIN N S, ASEM M, HARIKRISHNA J A, et al. Recent progress on nanocarriers for topical-mediated RNAi strategies for crop protection: a review[J]. Molecules, 2023, 28(6): 2700. |
| [16] | SALMAN HAMEED M, REN Y L, TUDA M, et al. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: a review[J]. Gene, 2024, 903: 148195. |
| [17] | VETUKURI R R, DUBEY M, KALYANDURG P B, et al. Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control[J]. Crop Breeding and Applied Biotechnology, 2021, 21(S): e387921S11. |
| [18] | BRAMLETT M, PLAETINCK G, MAIENFISCH P. RNA-based biocontrols: a new paradigm in crop protection[J]. Engineering, 2020, 6(5): 522-527. |
| [19] | QIAO L L, LAN C, CAPRIOTTI L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnology Journal, 2021, 19(9): 1756-1768. |
| [20] | 潘多, 张嵩玥, 刘芳伊, 等. 病毒诱导的基因沉默技术用于植物色素代谢机制的研究进展[J]. 生物工程学报, 2023, 39(7): 2579-2599. |
| [21] | LIU Y L, LYU R Q, SINGLETON J J, et al. A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants[J]. Plant Methods, 2024, 20(1): 26. |
| [22] | 吴娟, 李佳燕, 李伟, 等. 黄瓜花叶病毒基因沉默载体的病毒含量和症状分析[J]. 植物医学, 2023, 2(6): 21-27. |
| [23] | TIAN Y, FANG Y, ZHANG K X, et al. Applications of virus-induced gene silencing in cotton[J]. Plants, 2024, 13(2): 272. |
| [24] | BENNYPAUL H, GILL U S. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing to functionally characterize genes in wheat and barley[M]// MYSORE K S, SENTHIL-KUMAR M. Plant gene silencing. New York: Springer US, 2022: 85-93. |
| [25] | KOUDOUNAS K, THOMOPOULOU M, ANGELI E, et al. Virus-induced gene silencing in olive tree (Oleaceae)[J]. Methods in Molecular Biology, 2020, 2172: 165-182. |
| [26] | RIBEIRO C W, DUGÉ DE BERNONVILLE T, GLÉVAREC G, et al. ALSV-based virus-induced gene silencing in apple tree (Malus×domestica L.)[J]. Methods in Molecular Biology, 2020, 2172: 183-197. |
| [27] | GHAG S B. Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens[J]. Physiological and Molecular Plant Pathology, 2017, 100: 242-254. |
| [28] | LI Y H, HALLERMAN E M, WU K M, et al. Insect-resistant genetically engineered crops in China: development, application, and prospects for use[J]. Annual Review of Entomology, 2020, 65: 273-292. |
| [29] | WEI C Y, QIN T F, LI Y Q, et al. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.)[J]. Biochemical and Biophysical Research Communications, 2020, 524(2): 392-397. |
| [30] | JIN B J, CHUN H J, CHOI C W, et al. Host-induced gene silencing is a promising biological tool to characterize the pathogenicity of Magnaporthe oryzae and control fungal disease in rice[J]. Plant, Cell & Environment, 2024, 47(1): 319-336. |
| [31] | YANG J, SUN X Q, ZHU-SALZMAN K, et al. Host-induced gene silencing of brown planthopper glutathione S-transferase gene enhances rice resistance to sap-sucking insect pests[J]. Journal of Pest Science, 2021, 94(3): 769-781. |
| [32] | VERMA K, MODGIL M. RNA interference (RNAi) mediated technique for combating plant diseases: harnessing nanoparticles for effective delivery and enhanced efficacy[J]. Plant Cell, Tissue and Organ Culture, 2024, 157(3): 53. |
| [33] | 关梅, 晁子健, 闫硕, 等. RNA农药的研究现状和发展前景[J]. 现代农药, 2023, 22(2): 11-18. |
| [34] | 王谦稳, 卜春亚, 陈耔霖, 等. 纳米载体介导的乙酰胆碱酯酶RNA干扰对朱砂叶螨生长发育的影响[J]. 应用与环境生物学报, 2024, 30(5): 975-980. |
| [35] | JIANG L, WANG Q, KANG Z H, et al. Novel environmentally friendly RNAi biopesticides: targeting V-ATPase in Holotrichia parallela larvae using layered double hydroxide nanocomplexes[J]. Journal of Agricultural and Food Chemistry, 2024, 72(20): 11381-11391. |
| [36] | ZHENG W Y, XU X N, HUANG X X, et al. Spray-induced and nanocarrier-delivered gene silencing system targeting juvenile hormone receptor components: potential application as fertility inhibitors for Adelphocoris suturalis management[J]. Pest Management Science, 2024, 80(8): 3743-3751. |
| [37] | 饶玉春, 吴日成, 刘富远, 等. RNAi在水稻病虫害防控中的应用研究进展[J]. 浙江师范大学学报(自然科学版), 2024, 47(4): 361-369. |
| [38] | 杨鹏. 抗赤霉病RNA干扰片段的鉴定及转玉米VP1基因小麦的抗穗发芽机理[D]. 武汉: 华中农业大学, 2019. |
| [39] | 赵佳乐. 玉米介导RNAi技术沉默粘虫Chitinase基因的有效性鉴定[D]. 临汾: 山西师范大学, 2021. |
| [40] | XU J, WANG X Y, LI Y Q, et al. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton[J]. Plant Biotechnology Journal, 2018, 16(9): 1629-1643. |
| [41] | CHENG W, SONG X S, LI H P, et al. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat[J]. Plant Biotechnology Journal, 2015, 13(9): 1335-1345. |
| [42] | YIN S, BART T. Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis[J]. Molecular Plant Pathology, 2018, 19(1): 77-89. |
| [43] | SCHAEFER L K, PARLANGE F, BUCHMANN G, et al. Cross-kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat[J]. Frontiers in Plant Science, 2020, 11: 253. |
| [44] | HUANG C M, WANG Z, ZHU P Y, et al. RNAi-based genetically engineered rice resistant to black-streaked dwarf virus does not show adverse genetic effects: a multi-omics analysis[J]. Plants, People, Planet, 2024, 6(3): 622-639. |
| [45] | TANG Y, HE H, QU X, et al. RNA interference-mediated knockdown of the transcription factor Krüppel homologue 1 suppresses vitellogenesis in Chilo suppressalis[J]. Insect Molecular Biology, 2020, 29(2): 183-192. |
| [46] | SEGERS A, CARPENTIER J, FRANCIS F, et al. Gene silencing of laccase 1 induced by double-stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) suggests RNAi as a potential new biotechnological tool for bruchid's control[J]. Agriculture, 2023, 13(2): 412. |
| [47] | BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense[J]. Scientific Reports, 2017, 7: 6448. |
| [48] | HOANG T, FOQUET B, RANA S, et al. Development of RNAi methods for the mormon cricket, Anabrus simplex (Orthoptera: Tettigoniidae)[J]. Insects, 2022, 13(8): 739. |
| [49] | SINGH S, GUPTA M, PANDHER S, et al. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae)[J]. BMC Molecular Biology, 2019, 20(1): 6. |
| [50] | AIRS P M, BARTHOLOMAY L C. RNA interference for mosquito and mosquito-borne disease control[J]. Insects, 2017, 8(1): 4. |
| [51] | GUAN R B, LI H C, MIAO X X. RNAi pest control and enhanced BT insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis[J]. Journal of Pest Science, 2017, 90(2): 745-757. |
| [52] | BAUM J A, BOGAERT T, CLINTON W, et al. Control of coleopteran insect pests through RNA interference[J]. Nature Biotechnology, 2007, 25(11): 1322-1326. |
| [53] | MAO Y B, CAI W J, WANG J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nature Biotechnology, 2007, 25(11): 1307-1313. |
| [54] | WANG Z J, DONG Y C, DESNEUX N, et al. RNAi silencing of the HaHMG-CoA reductase gene inhibits oviposition in the Helicoverpa armigera cotton bollworm[J]. PLoS One, 2013, 8(7): e67732. |
| [55] | RODRIGUES T B, RIESKE L K, DUAN J J, et al. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis[J]. Scientific Reports, 2017, 7: 7379. |
| [56] | DARLINGTON M, REINDERS J D, SETHI A, et al. RNAi for western corn rootworm management: lessons learned, challenges, and future directions[J]. Insects, 2022, 13(1): 57. |
| [57] | 崔晶. 松材线虫在α-蒎烯胁迫下的种群结构变化及分子响应[D]. 北京: 中国林业科学研究院, 2019. |
| [58] | 彭萌萌, 吴红渠, 张佳雯, 等. 基于RNAi技术解析美国白蛾HcAnk1和HcAnk2基因功能及对HcNPV的敏感性(英文)[J]. 南京林业大学学报(自然科学版), 2024, 48 (3): 181-190. |
| [59] | 张淑静, 王高振, 刘爽, 等. 利用RNAi技术沉默东方粘虫V-ATP酶H亚基研究[J]. 西北农业学报, 2015, 24(1): 170-174. |
| [60] | KENNERDELL J R, CARTHEW R W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell, 1998, 95(7): 1017-1026. |
| [61] | HUGHES C L, KAUFMAN T C. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head[J]. Development, 2000, 127(17): 3683-3694. |
| [62] | KOSHEROVA K A, ROSHINA N V, SYMONENKO A V, et al. Effect of RNA interference-induced knockdown of the actin gene on mortality of the German cockroach, Blattella germanica[J]. Russian Journal of Genetics, 2025, 61(9): 1079-1087. |
| MARTIN K C, ZUKIN R S. RNA trafficking and local protein synthesis in dendrites: an overview[J]. The Journal of Neuroscience, 2006, 26(27): 7131-7134. | |
| [63] | LIU S H, DING Z P, ZHANG C W, et al. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens[J]. Insect Biochemistry and Molecular Biology, 2010, 40(9): 666-671. |
| [64] | BUCHER G, SCHOLTEN J, KLINGLER M. Parental RNAi in Tribolium (Coleoptera)[J]. Current Biology, 2002, 12(3): R85-R86. |
| [65] | TABARA H, GRISHOK A, MELLO C C. RNAi inC. elegans: soaking in the genome sequence[J]. Science, 1998, 282(5388): 430-431. |
| [66] | YANG J, ZHANG Y Y, ZHANG Z H, et al. The development of an egg-soaking method for delivering dsRNAs into spider mites[J]. Pesticide Biochemistry and Physiology, 2024, 201: 105905. |
| [67] | TIMMONS L, FIRE A. Specific interference by ingested dsRNA[J]. Nature, 1998, 395(6705): 854. |
| [68] | 田宏刚. 利用饲喂法RNAi研究昆虫生长发育相关基因的功能[D]. 广州: 中山大学, 2009. |
| [69] | TERENIUS O, PAPANICOLAOU A, GARBUTT J S, et al. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design[J]. Journal of Insect Physiology, 2011, 57(2): 231-245. |
| [70] | KENNERDELL J R, CARTHEW R W. Heritable gene silencing in Drosophila using double-stranded RNA[J]. Nature Biotechnology, 2000, 18(8): 896-898. |
| [71] | MILLER S C, MIYATA K, BROWN S J, et al. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi[J]. PLoS One, 2012, 7(10): e47431. |
| [72] | QIU S B, ADEMA C M, LANE T. A computational study of off-target effects of RNA interference[J]. Nucleic Acids Research, 2005, 33(6): 1834-1847. |
| [73] | BOETTCHER M, MCMANUS M T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR[J]. Molecular Cell, 2015, 58(4): 575-585. |
| [74] | 焦悦, 付伟, 翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018(1): 9-15. |
| [75] | YANG Y Q, WEN W, CHEN Y N, et al. Unveiling fenpropathrin resistance levels in field populations of Tetranychus cinnabarinus (Boisduval): insights, risks, and RNAi strategy[J]. Pesticide Biochemistry and Physiology, 2024, 202: 105914. |
| [76] | 张文庆, 王桂荣. RNA干扰从基因功能到生物农药[M]. 北京: 科学出版社, 2021. |
| [1] | 朱宇, 刘洋. 稻纵卷叶螟不同发育阶段miRNA表达谱分析[J]. 浙江农业科学, 2025, 66(4): 979-985. |
| [2] | 王爱英;傅强;赖凤香;王渭霞. RNA干扰技术在植物品质改良和病虫害防治中的应用[J]. , 2014, 1(6): 0-886. |
| [3] | 王守先;牛宝龙;沈卫锋;翁宏飚;何丽华;蒋平;吾中良;孟智启. 松材线虫RNA聚合酶基因的RNA干扰研究[J]. , 2007, 1(06): 0-694. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||