浙江农业科学 ›› 2025, Vol. 66 ›› Issue (6): 1526-1530.DOI: 10.16178/j.issn.0528-9017.20250127

• 资源与环境 • 上一篇    下一篇

基于ARMA模型的森林蓄积量精确预测研究

郜昌建(), 王海龙, 蓝艺涵, 王世红()   

  1. 浙江省林业勘测规划设计有限公司,浙江 杭州 310020
  • 收稿日期:2025-01-20 出版日期:2025-06-11 发布日期:2025-06-23
  • 通讯作者: 王世红,女,浙江杭州人,工程师,硕士,研究方向为森林资源调查监测与规划设计,E-mail:68050981@qq.com
  • 作者简介:郜昌建(1991—),男,安徽蚌埠人,工程师,硕士,从事森林资源与生态状况调查监测,E-mail: 864821318@qq.com

Study on accurate prediction of forest volume based on ARMA model

GAO Changjian(), WANG Hailong, LAN Yihan, WANG Shihong()   

  1. Zhejiang Forestry Survey Planning and Design Co., Ltd., Hangzhou 310020, Zhejiang
  • Received:2025-01-20 Online:2025-06-11 Published:2025-06-23

摘要:

森林蓄积量作为评估森林资源丰度、生态系统健康及碳汇能力的重要指标,其精准预测对于林业可持续经营与碳中和路径制定具有重要意义。本研究综合对比了自回归移动平均(ARMA)模型结合相关最小二乘算法(ARMAP)、普通最小二乘算法(ARMAO)、灰色系统理论(GST)及BP神经网络(BPNN)4种方法在森林蓄积量预测中的性能。以福州市永泰县城峰镇1986—1999年林地面积与森林蓄积量数据为基础构建模型,并采用1998、1999年数据进行预测验证。结果表明,ARMAP模型通过有效滤除有色噪声,实现了最高预测精度,其残差方差和预测误差均显著低于其他模型。进一步利用该模型对浙江省2020年森林蓄积量进行了预测验证,结果显示,模型表现出较强的泛化能力。研究表明,ARMAP模型能够在复杂干扰情境下实现高精度、高效率的森林蓄积量预测,为森林资源管理与碳汇评估提供了方法支持。

关键词: 森林蓄积量, ARMA模型, 相关最小二乘算法

Abstract:

Forest volume is a crucial indicator for assessing forest resource abundance, ecosystem health, and carbon sequestration capacity. Accurate predictions of forest volume are essential for sustainable forest management and carbon neutrality planning. This study comprehensively compared the performance of four methods for predicting forest volume: the auto regressive moving average(ARMA) model combined with the partial least squares method (ARMAP), the ordinary least squares method (ARMAO), the grey system theory (GST), and the BP neural network (BPNN). Using forest land area and forest volume data from Chengfeng Town, Yongtai County, Fuzhou City, from 1986 to 1999, models were developed and validated with data from 1998 and 1999. The results indicate that the highest prediction accuracy by effectively filtering colored noise, with significantly lower residual variance and prediction errors compared with other models. Further validation using Zhejiang Province's 2020 forest volume data demonstrated the model's strong generalization ability. This study shows that the ARMAP model can achieve high-precision and efficient forest volume predictions under complex disturbance scenarios, providing methodological support for forest resource management and carbon sink evaluation.

Key words: forest volume, ARMA model, partial least squares method

中图分类号: