浙江农业科学 ›› 2025, Vol. 66 ›› Issue (9): 2200-2207.DOI: 10.16178/j.issn.0528-9017.20250344
王梅芳1(), 席超越1, 朱海生2,*(
), 陈丽妃1,*(
)
收稿日期:
2025-05-12
出版日期:
2025-09-11
发布日期:
2025-10-14
通讯作者:
陈丽妃(1990—),女,福建莆田人,讲师,博士,主要从事蛋白结构与功能研究,E-mail:chenlf@fjnu.edu.cn;朱海生(1978—),男,福建福州人,研究员,博士,主要从事园艺植物生理生化与分子生物学研究,E-mail:zhs0246@163.com。
作者简介:
王梅芳(2001—),女,福建泉州人,硕士,主要从事蛋白结构与功能研究,E-mail:wmf18750767972@163.com。
基金资助:
WANG Meifang1(), XI Chaoyue1, ZHU Haisheng2,*(
), CHEN Lifei1,*(
)
Received:
2025-05-12
Online:
2025-09-11
Published:
2025-10-14
摘要:
青枯病(bacterial wilt)是由青枯雷尔氏菌(Ralstonia solanacearum)引发的细菌性病害,主要侵染植株的根、茎、叶,且寄主范围、分布范围极广,是一种毁灭性的植物土传病害。研究表明,青枯菌通过Ⅲ型分泌系统(type Ⅲ secretion system,T3SS)将大量的Ⅲ型效应蛋白(type Ⅲ effectors,T3Es)直接运输到宿主细胞内,以此来干扰寄主的免疫反应。T3Es能够靶向寄主免疫相关蛋白来影响植物代谢及激素信号转导通路,在抑制宿主免疫反应的过程中发挥重要作用。本文总结了青枯菌T3Es与宿主蛋白的相互作用及其机制,为探索青枯菌的致病机制及防治青枯病提供了有效参考。
中图分类号:
王梅芳, 席超越, 朱海生, 陈丽妃. 青枯菌Ⅲ型效应蛋白与宿主蛋白相互作用研究进展[J]. 浙江农业科学, 2025, 66(9): 2200-2207.
WANG Meifang, XI Chaoyue, ZHU Haisheng, CHEN Lifei. Research progress on the interactions of Ralstonia solanacearum type Ⅲ effector proteins and host proteins[J]. Journal of Zhejiang Agricultural Sciences, 2025, 66(9): 2200-2207.
效应蛋白 | 亚细胞定位 | 互作宿主蛋白 | 互作机制 | 参考文献 |
---|---|---|---|---|
RipGs | 叶绿体和质膜 | SKP1 | 模拟植物的F-box蛋白功能,劫持植物的SCF复合体,操纵植物的泛素-蛋白酶体系统 | [ |
RipE1 | — | 植物去泛素化酶 | 与植物去泛素蛋白酶结合,有助于RipE1去泛素化和蛋白质稳定性 | [ |
RipI | 细胞核 | bHLH93、GADs | 与bHLH 93转录因子相互作用诱导宿主防御反应;与GADs相互作用,促进GADs被钙调蛋白激活 | [ |
RipP2(Ppop2) | 细胞核 | PAD4 | 通过其乙酰转移酶活性靶向植物免疫调节蛋白PAD4 | [ |
RipX | 细胞核和质膜 | atpA | 抑制植物线粒体ATP合酶α亚基基因atpA的表达来诱导植物防御反应 | [ |
RipAC | 细胞核和细胞质 | SGT1 | 与SGT1结合,抑制NLR介导的SGT1依赖性免疫反应 | [ |
RipAK | 过氧化物酶体 | PDCs、CATs | 与PDCs相互作用,抑制其寡聚化和酶活性,促进病原体的毒力;通过抑制CATs活性,靶向植物细胞内的过氧化物酶体,抑制植物的免疫反应 | [ |
RipAS | 核质 | StTOPP6 | 与StTOPP6相互作用,导致StTOPP6在核仁中的积累减少 | [ |
RipAX1、RipAX2 | 细胞质 | MAPK | RipAX1及RipAX2能够与MAPK相互作用,RipAX1能够抑制MAPKs的磷酸化 | [ |
RipAY | 细胞核和细胞质 | H型硫氧还蛋白 | 降解植物中的谷胱甘肽,抑制SA介导的防御 | [ |
表1 青枯菌Ⅲ型效应蛋白与宿主蛋白相互作用
Table 1 Interaction of R. solanacearum type Ⅲ effector proteins with host proteins
效应蛋白 | 亚细胞定位 | 互作宿主蛋白 | 互作机制 | 参考文献 |
---|---|---|---|---|
RipGs | 叶绿体和质膜 | SKP1 | 模拟植物的F-box蛋白功能,劫持植物的SCF复合体,操纵植物的泛素-蛋白酶体系统 | [ |
RipE1 | — | 植物去泛素化酶 | 与植物去泛素蛋白酶结合,有助于RipE1去泛素化和蛋白质稳定性 | [ |
RipI | 细胞核 | bHLH93、GADs | 与bHLH 93转录因子相互作用诱导宿主防御反应;与GADs相互作用,促进GADs被钙调蛋白激活 | [ |
RipP2(Ppop2) | 细胞核 | PAD4 | 通过其乙酰转移酶活性靶向植物免疫调节蛋白PAD4 | [ |
RipX | 细胞核和质膜 | atpA | 抑制植物线粒体ATP合酶α亚基基因atpA的表达来诱导植物防御反应 | [ |
RipAC | 细胞核和细胞质 | SGT1 | 与SGT1结合,抑制NLR介导的SGT1依赖性免疫反应 | [ |
RipAK | 过氧化物酶体 | PDCs、CATs | 与PDCs相互作用,抑制其寡聚化和酶活性,促进病原体的毒力;通过抑制CATs活性,靶向植物细胞内的过氧化物酶体,抑制植物的免疫反应 | [ |
RipAS | 核质 | StTOPP6 | 与StTOPP6相互作用,导致StTOPP6在核仁中的积累减少 | [ |
RipAX1、RipAX2 | 细胞质 | MAPK | RipAX1及RipAX2能够与MAPK相互作用,RipAX1能够抑制MAPKs的磷酸化 | [ |
RipAY | 细胞核和细胞质 | H型硫氧还蛋白 | 降解植物中的谷胱甘肽,抑制SA介导的防御 | [ |
效应蛋白 | 亚细胞定位 | 功能 | 参考文献 |
---|---|---|---|
RipA5 | 细胞质 | 在酵母和本氏烟草中抑制TOR通路,在拟南芥中对毒力产生负面影响,并在不同种类的烟草中引发细胞死亡 | [ |
RipB | Roq1介导的青枯病抗性 | [ | |
RipD | 内质网 | 提高茄子、番茄和豆类中细菌的适应性,以及在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipE1 | — | 诱导水杨酸和茉莉酸合成以触发拟南芥和本氏烟草中的免疫应答 | [ |
RipM、RipQ、RipS1 | — | 在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipN | 细胞核和内质网 | 改变植物NADH/NAD+比率并抑制拟南芥中的PAMP触发的免疫防御 | [ |
RipV1、RipV2 | 质膜 | PAMP引发的免疫抑制对其E3泛素连接酶活性的影响 | [ |
RipX | 细胞核和质膜 | 在矮牵牛、烟草和本氏烟草中通过对其atpA基因的转录以及离子传导孔形成的负面效应 | [ |
RipAD | 细胞质和叶绿体 | 在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipAF1 | 细胞核和细胞质 | [ | |
RipAR、RipAW | 细胞质 | PAMP引发的免疫抑制对其E3泛素连接酶活性的影响 | [ |
RipAU | [ | ||
RipAY | 细胞核和细胞质 | 在酵母、茄子和拟南芥中耗竭谷胱甘肽,在拟南芥中抑制水杨酸介导的防御,并在本氏烟草中抑制RipE1介导的超敏反应 | [ |
RipTAL | 细胞核 | 诱导植物多胺的合成,抑制竞争菌株的增殖 | [ |
RipTPS | — | 在酵母中合成海藻糖-6-磷酸,并在烟草中诱导酶活性独立的超敏反应 | [ |
表2 青枯菌Ⅲ型效应蛋白及其功能
Table 2 Type Ⅲ effector proteins of R. solanacearum and their functions
效应蛋白 | 亚细胞定位 | 功能 | 参考文献 |
---|---|---|---|
RipA5 | 细胞质 | 在酵母和本氏烟草中抑制TOR通路,在拟南芥中对毒力产生负面影响,并在不同种类的烟草中引发细胞死亡 | [ |
RipB | Roq1介导的青枯病抗性 | [ | |
RipD | 内质网 | 提高茄子、番茄和豆类中细菌的适应性,以及在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipE1 | — | 诱导水杨酸和茉莉酸合成以触发拟南芥和本氏烟草中的免疫应答 | [ |
RipM、RipQ、RipS1 | — | 在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipN | 细胞核和内质网 | 改变植物NADH/NAD+比率并抑制拟南芥中的PAMP触发的免疫防御 | [ |
RipV1、RipV2 | 质膜 | PAMP引发的免疫抑制对其E3泛素连接酶活性的影响 | [ |
RipX | 细胞核和质膜 | 在矮牵牛、烟草和本氏烟草中通过对其atpA基因的转录以及离子传导孔形成的负面效应 | [ |
RipAD | 细胞质和叶绿体 | 在本氏烟草中抑制flg22诱导的活性氧自由基产生 | [ |
RipAF1 | 细胞核和细胞质 | [ | |
RipAR、RipAW | 细胞质 | PAMP引发的免疫抑制对其E3泛素连接酶活性的影响 | [ |
RipAU | [ | ||
RipAY | 细胞核和细胞质 | 在酵母、茄子和拟南芥中耗竭谷胱甘肽,在拟南芥中抑制水杨酸介导的防御,并在本氏烟草中抑制RipE1介导的超敏反应 | [ |
RipTAL | 细胞核 | 诱导植物多胺的合成,抑制竞争菌株的增殖 | [ |
RipTPS | — | 在酵母中合成海藻糖-6-磷酸,并在烟草中诱导酶活性独立的超敏反应 | [ |
[1] | MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(6): 614-629. |
[2] | VASSE J. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum[J]. Molecular Plant-Microbe Interactions, 1995, 8(2): 241. |
[3] | JIANG G F, WEI Z, XU J, et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549. |
[4] | GALÁN J E, LARA-TEJERO M, MARLOVITS T C, et al. Bacterial type Ⅲ secretion systems: specialized nanomachines for protein delivery into target cells[J]. Annual Review of Microbiology, 2014, 68: 415-438. |
[5] | HAYWARD A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1991, 29: 65-87. |
[6] | JONES J D G, VANCE R E, DANGL J L. Intracellular innate immune surveillance devices in plants and animals[J]. Science, 2016, 354(6316): aaf6395. |
[7] | DESLANDES L, GENIN S. Opening the Ralstonia solanacearum type Ⅲ effector tool box: insights into host cell subversion mechanisms[J]. Current Opinion in Plant Biology, 2014, 20: 110-117. |
[8] | MILETIC S, FAHRENKAMP D, GOESSWEINER-MOHR N, et al. Substrate-engaged type Ⅲ secretion system structures reveal gating mechanism for unfolded protein translocation[J]. Nature Communications, 2021, 12(1): 1546. |
[9] | WICKER E, LEFEUVRE P, DE CAMBIAIRE J C, et al. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA[J]. The ISME Journal, 2012, 6(5): 961-974. |
[10] | GENIN S, DENNY T P. Pathogenomics of the Ralstonia solanacearum species complex[J]. Annual Review of Phytopathology, 2012, 50: 67-89. |
[11] | LANDRY D, GONZÁLEZ-FUENTE M, DESLANDES L, et al. The large, diverse, and robust arsenal of Ralstonia solanacearum type Ⅲ effectors and their in planta functions[J]. Molecular Plant Pathology, 2020, 21(10): 1377-1388. |
[12] | PEETERS N, CARRÈRE S, ANISIMOVA M, et al. Repertoire, unified nomenclature and evolution of the Type Ⅲ effector gene set in the Ralstonia solanacearum species complex[J]. BMC Genomics, 2013, 14: 85. |
[13] | KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif[J]. Current Opinion in Structural Biology, 2001, 11(6): 725-732. |
[14] | YU G, XIAN L, XUE H, et al. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity[J]. PLoS Pathogens, 2020, 16(9): e1008933. |
[15] | SHIRASU K. The HSP90-SGT1 chaperone complex for NLR immune sensors[J]. Annual Review of Plant Biology, 2009, 60: 139-164. |
[16] | BOTËR M, AMIGUES B, PEART J, et al. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity[J]. The Plant Cell, 2007, 19(11): 3791-3804. |
[17] | CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: from pathogen perception to robust defense[J]. Annual Review of Plant Biology, 2015, 66: 487-511. |
[18] | HOLT B F 3rd, BELKHADIR Y, DANGL J L. Antagonistic control of disease resistance protein stability in the plant immune system[J]. Science, 2005, 309(5736): 929-932. |
[19] | AZEVEDO C, BETSUYAKU S, PEART J, et al. Role of SGT1 in resistance protein accumulation in plant immunity[J]. EMBO Journal, 2006, 25(9): 2007-2016. |
[20] | NAKANO M, ICHINOSE Y, MUKAIHARA T. Ralstonia solanacearum type Ⅲ effector RipAC targets SGT1 to suppress effector-triggered immunity[J]. Plant & Cell Physiology, 2021, 61(12): 2067-2076. |
[21] | NOËL L D, CAGNA G, STUTTMANN J, et al. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses[J]. The Plant Cell, 2007, 19(12): 4061-4076. |
[22] | NOCTOR G, MHAMDI A, CHAOUCH S, et al. Glutathione in plants: an integrated overview[J]. Plant, Cell & Environment, 2012, 35(2): 454-484. |
[23] | FRENDO P, BALDACCI-CRESP F, BENYAMINA S M, et al. Glutathione and plant response to the biotic environment[J]. Free Radical Biology and Medicine, 2013, 65: 724-730. |
[24] | GHANTA S, CHATTOPADHYAY S. Glutathione as a signaling molecule: another challenge to pathogens[J]. Plant Signaling & Behavior, 2011, 6(6): 783-788. |
[25] | SANG Y Y, WANG Y R, NI H, et al. The Ralstonia solanacearum type Ⅲ effector RipAY targets plant redox regulators to suppress immune responses[J]. Molecular Plant Pathology, 2018, 19(1): 129-142. |
[26] | MUKAIHARA T, HATANAKA T, NAKANO M, et al. Ralstonia solanacearum type Ⅲ effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity[J]. mBio, 2016, 7(2): e00359-16. |
[27] | SAITOH M, NISHITOH H, FUJII M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1[J]. EMBO Journal, 1998, 17(9): 2596-2606. |
[28] | WANG B S, HE T J, ZHENG X A, et al. Proteomic analysis of potato responding to the invasion of Ralstonia solanacearum UW551 and its type Ⅲ secretion system mutant[J]. Molecular Plant-Microbe Interactions®, 2021, 34(4): 337-350. |
[29] | BRADAI M, MAHJOUBI H, CHINI A, et al. Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a[J]. PLoS One, 2018, 13(1): e0191272. |
[30] | BHERI M, MAHIWAL S, SANYAL S K, et al. Plant protein phosphatases: What do we know about their mechanism of action?[J]. The FEBS Journal, 2021, 288(3): 756-785. |
[31] | MOORHEAD G B G, DE WEVER V, TEMPLETON G, et al. Evolution of protein phosphatases in plants and animals[J]. Biochemical Journal, 2009, 417(2): 401-409. |
[32] | CEULEMANS H, BOLLEN M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button[J]. Physiological Reviews, 2004, 84(1): 1-39. |
[33] | HOU Y J, ZHU Y F, WANG P C, et al. Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling[J]. PLoS Genetics, 2016, 12(3): e1005835. |
[34] | WANG B S, HE W F, HUANG M S, et al. Ralstonia solanacearum type Ⅲ effector RipAS associates with potato type one protein phosphatase StTOPP6 to promote bacterial wilt[J]. Horticulture Research, 2023, 10(6): uhad087. |
[35] | BOLLEN M, PETI W, RAGUSA M J, et al. The extended PP1 toolkit: designed to create specificity[J]. Trends in Biochemical Sciences, 2010, 35(8): 450-458. |
[36] | PETI W, NAIRN A C, PAGE R. Structural basis for protein phosphatase 1 regulation and specificity[J]. The FEBS Journal, 2013, 280(2): 596-611. |
[37] | COHEN P T W. Protein phosphatase 1: targeted in many directions[J]. Journal of Cell Science, 2002, 115(Pt 2): 241-256. |
[38] | HENDRICKX A, BEULLENS M, CEULEMANS H, et al. Docking motif-guided mapping of the interactome of protein phosphatase-1[J]. Chemistry & Biology, 2009, 16(4): 365-371. |
[39] | WANG Y R, ZHAO A C, MORCILLO R J L, et al. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease[J]. Molecular Plant, 2021, 14(8): 1281-1296. |
[40] | SUN Y H, LI P, DENG M Y, et al. The Ralstonia solanacearum effector RipAK suppresses plant hypersensitive response by inhibiting the activity of host catalases[J]. Cellular Microbiology, 2017, 19(8): e12736. |
[41] | MHAMDI A, NOCTOR G, BAKER A. Plant catalases: peroxisomal redox guardians[J]. Archives of Biochemistry and Biophysics, 2012, 525(2): 181-194. |
[42] | INABA J I, KIM B M, SHIMURA H, et al. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase[J]. Plant Physiology, 2011, 156(4): 2026-2036. |
[43] | ANGOT A, PEETERS N, LECHNER E, et al. Ralstonia solanacearum requires F-box-like domain-containing type Ⅲ effectors to promote disease on several host plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14620-14625. |
[44] | LIU T B, WANG Y N, STUKES S, et al. The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans[J]. Eukaryotic Cell, 2011, 10(6): 791-802. |
[45] | SCHULMAN B A, CARRANO A C, JEFFREY P D, et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex[J]. Nature, 2000, 408(6810): 381-386. |
[46] | XU C, LI M F, WU J K, et al. Identification of a canonical SCF(SLF) complex Involved in S-RNase-based self-incompatibility of Pyrus(Rosaceae)[J]. Plant Molecular Biology, 2013, 81(3): 245-257. |
[47] | ZHUO T, WANG X, CHEN Z Y, et al. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana[J]. Molecular Plant Pathology, 2020, 21(7): 999-1004. |
[48] | HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 2003, 20(5): 735-747. |
[49] | BRUEX A, KAINKARYAM R M, WIECKOWSKI Y, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis[J]. PLoS Genetics, 2012, 8(1): e1002446. |
[50] | XIAN L, YU G, WEI Y L, et al. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 2020, 28(4): 548-557.e7. |
[51] | YU W J, LI M, WANG W J, et al. A bacterial type Ⅲ effector hijacks plant ubiquitin proteases to evade degradation[J]. PLoS Pathogens, 2025, 21(1): e1012882. |
[52] | HUH S U. PopP2 interacts with PAD4 in an acetyltransferase activity-dependent manner and affects plant immunity[J]. Plant Signaling & Behavior, 2021, 16(12): 2017631. |
[53] | SUN T Y, WU W, WU H X, et al. Ralstonia solanacearum elicitor RipX induces defense reaction by suppressing the mitochondrial atpA gene in host plant[J]. International Journal of Molecular Sciences, 2020, 21(6): 2000. |
[54] | MENG Z, ZHENG X Y, ZHANG J, et al. The Ralstonia solanacearum RipAX family effectors repress the phosphorylation of host MAPKs[J]. Journal of Plant Pathology, 2024, 106(4): 1747-1757. |
[55] | HOGENHOUT S A, VAN DER HOORN R A L, TERAUCHI R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions, 2009, 22(2): 115-122. |
[56] | FENG F, ZHOU J M. Plant-bacterial pathogen interactions mediated by type Ⅲ effectors[J]. Current Opinion in Plant Biology, 2012, 15(4): 469-476. |
[57] | PETRE B, SAUNDERS D G O, SKLENAR J, et al. Candidate effector proteins of the rust pathogen Melampsora larici-Populina target diverse plant cell compartments[J]. Molecular Plant-Microbe Interactions, 2015, 28(6): 689-700. |
[58] | 吴幕绵, 陈舒婷, 李涛, 等. 青枯菌Ⅲ型效应蛋白调控植物免疫研究进展[J]. 广东农业科学, 2024, 51(8): 138-150. |
[59] | NAKANO M, MUKAIHARA T. Comprehensive identification of PTI suppressors in type Ⅲ effector repertoire reveals that Ralstonia solanacearum activates jasmonate signaling at two different steps[J]. International Journal of Molecular Sciences, 2019, 20(23): 5992. |
[60] | POPA C, LI L, GIL S, et al. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway[J]. Scientific Reports, 2016, 6: 27058. |
[61] | CAO P, CHEN J L, WANG R B, et al. A conserved type Ⅲ effector RipB is recognized in tobacco and contributes to Ralstonia solanacearum virulence in susceptible host plants[J]. Biochemical and Biophysical Research Communications, 2022, 631: 18-24. |
[62] | JEON H, KIM W, KIM B, et al. Ralstonia solanacearum type Ⅲ effectors with predicted nuclear localization signal localize to various cell compartments and modulate immune responses in Nicotiana spp[J]. Plant Pathology Journal, 2020, 36(1): 43-53. |
[63] | SANG Y Y, YU W J, ZHUANG H Y, et al. Intra-strain elicitation and suppression of plant immunity by Ralstonia solanacearum type-Ⅲ effectors in Nicotiana benthamiana[J]. Plant Communications, 2020, 1(4): 100025. |
[64] | SUN Y H, LI P, SHEN D, et al. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ratio in Arabidopsis[J]. Molecular Plant Pathology, 2019, 20(4): 533-546. |
[65] | CHENG D, ZHOU D, WANG Y Q, et al. The Ralstonia solanacearum effector RipV1 acts as a novel E3 ubiquitin ligase to suppress plant PAMP-triggered immunity responses and promote susceptibility in potato[J]. Plant Pathology, 2024, 73(5): 1276-1288. |
[66] | CHENG D, ZHOU D, WANG Y D, et al. Ralstonia solanacearum type Ⅲ effector RipV2 encoding a novel E3 ubiquitin ligase (NEL) is required for full virulence by suppressing plant PAMP-triggered immunity[J]. Biochemical and Biophysical Research Communications, 2021, 550: 120-126. |
[67] | MACHO A P, GUIDOT A, BARBERIS P, et al. A competitive index assay identifies several Ralstonia solanacearum type Ⅲ effector mutant strains with reduced fitness in host plants[J]. Molecular Plant-Microbe Interactions, 2010, 23(9): 1197-1205. |
[68] | NAKANO M, ODA K, MUKAIHARA T. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants[J]. Microbiology, 2017, 163(7): 992-1002. |
[69] | WU D S, VON ROEPENACK-LAHAYE E, BUNTRU M, et al. A plant pathogen type Ⅲ effector protein subverts translational regulation to boost host polyamine levels[J]. Cell Host & Microbe, 2019, 26(5): 638-649.e5. |
[70] | POUEYMIRO M, CAZALÉ A C, FRANÇOIS J M, et al. A Ralstonia solanacearum type Ⅲ effector directs the production of the plant signal metabolite trehalose-6-phosphate[J]. mBio, 2014, 5(6): e02065-14. |
[1] | 厉晓腊, 方鸣, 陈官菊, 刘又高, 蔡瑞杭, 王根锷, 柴一秋. 几种杀菌剂对番茄青枯病菌的室内抑菌研究[J]. 浙江农业科学, 2023, 64(4): 905-908. |
[2] | 尹虎成, 王瑞, 夏鹏亮, 舒照鹤, 张炜, 向炳清, 向稳, 王谦. 烟田蚯蚓现状及与连作障碍、烟草青枯病间的关系[J]. 浙江农业科学, 2020, 61(6): 1137-1139. |
[3] | 张琴, 姚燕来, 郭金伟, 刘洁琪, 顾群力. 土壤修复剂在茄子江丰1号生产中的应用[J]. 浙江农业科学, 2019, 60(5): 783-784. |
[4] | 余佳敏, 刘颖, 肖建华, 肖勇, 江鸿, 余祥文. 光能变价离子钛对烟草青枯雷尔氏菌和野火病菌的抑制作用[J]. 浙江农业科学, 2018, 59(5): 783-787. |
[5] | 王丽丽, 李洋, 林乐志. 抑制番茄青枯病拮抗菌株的田间生防效果[J]. 浙江农业科学, 2018, 59(2): 291-292. |
[6] | 张晓燕. 香料烟青枯病防控技术[J]. 浙江农业科学, 2014, 1(9): 1405-. |
[7] | 郭金伟;陈忠土;朱卫忠. 应用臭氧水溶液防治番茄青枯病效果试验初报[J]. , 2009, 1(01): 0-155. |
[8] | 邢娟;李志邈;杨悦俭;王荣青;吴才君. 番茄青枯病病菌生化型测定及其3种抗病性鉴定方法的比较[J]. , 2009, 1(01): 0-143. |
[9] | 王荣青;杨悦俭;周国治;阮美颖;叶青静;李志邈;姚祝平 . 寄主抗性、农业防治和化学防治在防治番茄青枯病中的作用[J]. , 2007, 1(05): 0-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||