[1] |
吴限鑫, 林秋君, 郭春景, 等. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析[J]. 中国粮油学报, 2019, 34(9): 130-138.
|
[2] |
苏福荣, 王松雪, 孙辉, 等. 国内外粮食中真菌毒素限量标准制定的现状与分析[J]. 粮油食品科技, 2007, 15(6): 57-59.
|
[3] |
CASTELLS M, RAMOS A J, SANCHIS V, et al. Distribution of total aflatoxins in milled fractions of hulled rice[J]. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2760-2764.
|
[4] |
张艺兵, 鲍蕾, 褚庆华. 农产品中真菌毒素的检测分析[M]. 北京: 化学工业出版社, 2006.
|
[5] |
TURNER N W, BRAMHMBHATT H, SZABO-VEZSE M, et al. Analytical methods for determination of mycotoxins: an update (2009-2014)[J]. Analytica Chimica Acta, 2015, 901: 12-33.
|
[6] |
HERZALLAH S M. Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors[J]. Food Chemistry, 2009, 114(3): 1141-1146.
|
[7] |
ERKEKOGLU P, ŞAHIN G, BAYDAR T. A special focus on mycotoxin contamination in baby foods: their presence and regulations[J]. FABAD Journal of Pharmaceutical Sciences, 2008, 33:51-66.
|
[8] |
CAMPAGNOLLO F B, GANEV K C, KHANEGHAH A M, et al. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: a review[J]. Food Control, 2016, 68: 310-329.
|
[9] |
BAYMAN P, BAKER J L. Ochratoxins: a global perspective[J]. Mycopathologia, 2006, 162(3): 215-223.
|
[10] |
WALKER R, CHRISTIAN LARSEN J. Ochratoxin A: previous risk assessments and issues arising[J]. Food Additives & Contaminants, 2005, 22(sup1): 6-9.
|
[11] |
SCOTT P M. Recent research on fumonisins: a review[J]. Food Additives & Contaminants: Part A, 2012, 29(2): 242-248.
|
[12] |
SUN G J, WANG S K, HU X, et al. Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China[J]. Food Additives and Contaminants, 2007, 24(2): 181-185.
|
[13] |
BERTERO A, MORETTI A, SPICER L J, et al. Fusarium molds and mycotoxins: potential species-specific effects[J]. Toxins, 2018, 10(6): 244.
|
[14] |
MORTENSEN G K, STROBEL B W, HANSEN H C B. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils[J]. Chemosphere, 2006, 62(10): 1673-1680.
|
[15] |
王怡净, 张立实. 玉米赤霉烯酮毒性研究进展[J]. 中国食品卫生杂志, 2002, 14(5): 40-43.
|
[16] |
KOWALSKA K, HABROWSKA-GÓRCZYNSKA D E, PIASTOWSKA-CIESIELSKA A W. Zearalenone as an endocrine disruptor in humans[J]. Environmental Toxicology and Pharmacology, 2016, 48: 141-149.
|
[17] |
EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM). Scientific opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed[J]. EFSA Journal, 2014, 12(12): 3916.
|
[18] |
李国林, 薛华丽, 毕阳, 等. 脱氧雪腐镰刀菌烯醇的毒性及脱毒研究进展[J]. 食品工业科技, 2013, 34(24): 380-384.
|
[19] |
程亮, 管军军, 常晓娇. 隐蔽型脱氧雪腐镰刀菌烯醇的研究进展[J]. 粮油食品科技, 2012, 20(6): 61-64.
|
[20] |
GAUTAM. Type I host resistance and trichothecene accumulation in Fusarium-infected wheat heads[J]. American Journal of Agricultural and Biological Sciences, 2011, 6(2): 231-241.
|
[21] |
BRYŁA M, KSIENIEWICZ-WOŹNIAK E, WAŚKIEWICZ A, et al. Natural occurrence of nivalenol, deoxynivalenol, and deoxynivalenol-3-glucoside in Polish winter wheat[J]. Toxins, 2018, 10(2): 81.
|
[22] |
邹广迅, 张红霞, 花日茂. T-2毒素的毒性效应及致毒机制研究进展[J]. 生态毒理学报, 2011, 6(2): 121-128.
|
[23] |
欧盟评估T-2毒素与HT-2毒素的膳食暴露风险[J]. 食品与机械, 2017, 33(8): 188.
|
[24] |
GOTTHARDT M, ASAM S, GUNKEL K, et al. Quantitation of six Alternaria toxins in infant foods applying stable isotope labeled standards[J]. Frontiers in Microbiology, 2019, 10: 109.
|
[25] |
TRALAMAZZA S M, PIACENTINI K C, IWASE C H T, et al. Toxigenic Alternaria species: impact in cereals worldwide[J]. Current Opinion in Food Science, 2018, 23: 57-63.
|
[26] |
RYCHLIK M, LEPPER H, WEIDNER C, et al. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management[J]. Food Control, 2016, 68: 181-185.
|
[27] |
SVINGEN T, LUND HANSEN N, TAXVIG C, et al. Enniatin B and beauvericin are common in Danish cereals and show high hepatotoxicity on a high-content imaging platform[J]. Environmental Toxicology, 2017, 32(5): 1658-1664.
|
[28] |
KAMYAR M, RAWNDUZI P, STUDENIK C R, et al. Investigation of the electrophysiological properties of enniatins[J]. Archives of Biochemistry and Biophysics, 2004, 429(2): 215-223.
|
[29] |
PROSPERINI A, JUAN-GARCÍA A, FONT G, et al. Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells[J]. Toxicology Letters, 2013, 222(2): 204-211.
|
[30] |
ÇELIK M, AKSOY H, YıLMAZ S. Evaluation of beauvericin genotoxicity with the chromosomal aberrations, sister-chromatid exchanges and micronucleus assays[J]. Ecotoxicology and Environmental Safety, 2010, 73(7): 1553-1557.
|
[31] |
WU F. Global impacts of aflatoxin in maize: trade and human health[J]. World Mycotoxin Journal, 2015, 8(2): 137-142.
|
[32] |
REDDY K, SALLEH B, SAAD B, et al. An overview of mycotoxin contamination in foods and its implications for human health[J]. Toxin Reviews, 2010, 29(1): 3-26.
|
[33] |
MEUCCI V, RAZZUOLI E, SOLDANI G, et al. Mycotoxin detection in infant formula milks in Italy[J]. Food Additives & Contaminants: Part A, 2010, 27(1): 64-71.
|
[34] |
LEITÃO A L. Occurrence of ochratoxin A in coffee: threads and solutions:a mini-review[J]. Beverages, 2019, 5(2): 36.
|
[35] |
MALIR F, OSTRY V, PFOHL-LESZKOWICZ A, et al. Ochratoxin A: 50 years of research[J]. Toxins, 2016, 8(7): 191.
|
[36] |
RAI A, DIXIT S, SINGH S P, et al. Presence of zearalenone in cereal grains and its exposure risk assessment in Indian population[J]. Journal of Food Science, 2018, 83(12): 3126-3133.
|
[37] |
UHLIG S, TORP M, HEIER B T. Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: a survey[J]. Food Chemistry, 2006, 94(2): 193-201.
|
[38] |
SERRANO A B, FONT G, RUIZ M J, et al. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area[J]. Food Chemistry, 2012, 135(2): 423-429.
|
[39] |
胡文彦, 孙小杰, 宗凌丽, 等. 大米与面粉中白僵菌毒素及恩镰孢菌素污染情况调查研究[J]. 食品科技, 2018, 43(2): 297-301.
|
[40] |
CHILAKA C A, DE BOEVRE M, ATANDA O O, et al. The status of Fusarium mycotoxins in Sub-Saharan Africa: a review of emerging trends and post-harvest mitigation strategies towards food control[J]. Toxins, 2017, 9(1): 19.
|
[41] |
SCUDAMORE K, PATEL S. The fate of deoxynivalenol and fumonisins in wheat and maize during commercial breakfast cereal production[J]. World Mycotoxin Journal, 2008, 1(4): 437-448.
|
[42] |
SHANAKHAT H, SORRENTINO A, RAIOLA A, et al. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview[J]. Journal of the Science of Food and Agriculture, 2018, 98(11): 4003-4013.
|
[43] |
KALAGATUR N K, KAMASANI J R, MUDILI V. Assessment of detoxification efficacy of irradiation on zearalenone mycotoxin in various fruit juices by response surface methodology and elucidation of its in-vitro toxicity[J]. Frontiers in Microbiology, 2018, 9: 2937.
|
[44] |
LUO Y, LIU X J, LI J K. Updating techniques on controlling mycotoxins: a review[J]. Food Control, 2018, 89: 123-132.
|
[45] |
WALRAVENS J, MIKULA H, RYCHLIK M, et al. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs[J]. Journal of Chromatography A, 2014, 1372: 91-101.
|
[46] |
WIELOGORSKA E, AHMED Y, MENEELY J, et al. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment[J]. Food Chemistry, 2019, 301: 125281.
|
[47] |
BASARAN P, BASARAN-AKGUL N, OKSUZ L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment[J]. Food Microbiology, 2008, 25(4): 626-632.
|
[48] |
GUNUPURU L R, PATEL J S, SUMARAH M W, et al. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat[J]. PLoS One, 2019, 14(9): e0220562.
|
[49] |
PORTO Y D, TROMBETE F M, FREITAS-SILVA O, et al. Gaseous ozonation to reduce aflatoxins levels and microbial contamination in corn grits[J]. Microorganisms, 2019, 7(8): 220.
|
[50] |
AGRIOPOULOU S, KOLIADIMA A, KARAISKAKIS G, et al. Kinetic study of aflatoxins' degradation in the presence of ozone[J]. Food Control, 2016, 61: 221-226.
|
[51] |
LI M, ZHU K X, WANG B W, et al. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment[J]. Food Chemistry, 2012, 135(4): 2163-2169.
|
[52] |
LIU Y, CHANG J, WANG P, et al. Effects of Saccharomyces cerevisiae on alleviating cytotoxicity of porcine jejunal epithelia cells induced by deoxynivalenol[J]. AMB Express, 2019, 9(1): 137.
|
[53] |
ZHANG Z, LI M, WU C E, et al. Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation[J]. Journal of Food Science and Technology, 2019, 56(4): 2326-2331.
|
[54] |
LI X H, TANG H, YANG C, et al. Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa[J]. Food Control, 2019, 96: 47-52.
|
[55] |
CENCE K, SANTOS P D, GARCIA M V, et al. Enzymatic biocontrol of spoilage fungi from salami[J]. LWT-Food Science and Technology, 2019, 115: 108457.
|
[56] |
TARAZONA A, GÓMEZ J V, MATEO E M, et al. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation[J]. International Journal of Food Microbiology, 2019, 306: 108259.
|
[57] |
ZHOU Y, WU S J, WANG F, et al. Assessing the toxicity in vitro of degradation products from deoxynivalenol photocatalytic degradation by using upconversion nanoparticles@TiO2 composite[J]. Chemosphere, 2020, 238: 124648.
|
[58] |
GONZÁLEZ-JARTÍN J M, DE CASTRO ALVES L, ALFONSO A, et al. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food[J]. Food Chemistry, 2019, 294: 60-66.
|
[59] |
AIKO V, MEHTA A. Occurrence, detection and detoxification of mycotoxins[J]. Journal of Biosciences, 2015, 40(5): 943-954.
|
[60] |
RYCHLIK M, HUMPF H U, MARKO D, et al. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins[J]. Mycotoxin Research, 2014, 30(4): 197-205.
|