[1] |
SPAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews, 2007, 31(4):425-448.
|
[2] |
REINEKE G, HEINZE B, SCHIRAWSKI J, et al. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation[J]. Molecular Plant Pathology, 2008, 9(3):339-355.
|
[3] |
HSIUNG R T, CHIU M C, CHOU J Y. Exogenous indole-3-acetic acid induced ethanol tolerance in phylogenetically diverse saccharomycetales yeasts[J]. Microbes and Environments, 2022, 37(1):ME21053.
|
[4] |
TSAVKELOVA E A, KLIMOVA S I, CHERDYNTSEVA T A, et al. Microbial producers of plant growth stimulators and their practical use: a review[J]. Applied Biochemistry and Microbiology, 2006,42:117-126.
|
[5] |
KUMLA J, SUWANNARACH N, MATSUI K, et al. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand[J]. PLoS One, 2020, 15(1):e0227478.
|
[6] |
ROMASI E F, LEE J. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1[J]. Journal of Microbiology and Biotechnology, 2013, 23(12):1726-1736.
|
[7] |
DONG L H, MA Y M, CHEN C Y, et al. Identification and characterization of auxin/IAA biosynthesis pathway in the rice blast fungus Magnaporthe oryzae[J]. Journal of Fungi, 2022, 8(2): 208.
|
[8] |
KRAUSE K, HENKE C, ASIIMWE T, et al. Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza[J]. Applied and Environmental Microbiology, 2015, 81(20):7003-7011.
|
[9] |
WOODWARD A W, BARTEL B. Auxin: regulation, action, and interaction[J]. Annals of Botany, 2005, 95(5):707-735.
|
[10] |
CHUNG K R, TZENG D D. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta[J]. Journal of Biological Sciences, 2004, 4(6): 744-750.
|
[11] |
CHUNG K R, SHILTS T, ERTÜRK Ü, et al. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of Citrus[J]. FEMS Microbiology Letters, 2003, 226(1): 23-30.
|
[12] |
王家利, 刘冬成, 郭小丽, 等. 生长素合成途径的研究进展[J]. 植物学报, 2012, 47(3):292-301.
|
[13] |
SARDAR P, KEMPKEN F. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa[J]. PLoS One, 2018, 13(2): e0192293.
|
[14] |
TSAVKELOVA E, OESER B, OREN-YOUNG L, et al. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species[J]. Fungal Genetics and Biology, 2012, 49(1):48-57.
|
[15] |
KULKARNI G B, SANJEEVKUMAR S, KIRANKUMAR B, et al. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of Wilt in Chickpea[J]. Applied Biochemistry and Biotechnology, 2013, 169(4):1292-1305.
|
[16] |
NORMANLY J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(1): a001594.
|
[17] |
SANDBERG G. Biosynthesis and metabolism of indole-3-ethanol and indole-3-acetic acid by Pinus sylvestris L. needles[J]. Planta, 1984, 161(5):398-403.
|
[18] |
ROBINSON M, RIOV J, SHARON A. Indole-3- acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene[J]. Applied and Environmental Microbiology, 1998, 64(12):5030-5032.
|
[19] |
SUN P F, FANG W T, SHIN L Y, et al. Indole-3- acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L[J]. PLoS One, 2014, 9(12): e114196.
|
[20] |
RAO R P, HUNTER A, KASHPUR O, et al. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi[J]. Genetics, 2010, 185(1):211-220.
|
[21] |
BUNSANGIAM S, SAKPUNTOON V, SRISUK N, et al. Biosynthetic pathway of indole-3-acetic acid in basidiomycetous yeast Rhodosporidiobolus fluvialis[J]. Mycobiology, 2019, 47(3): 292-300.
|
[22] |
JAHN L, HOFMANN U, LUDWIG-MÜLLER J. Indole-3- acetic acid is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and-independent way and mediates the interaction with a non-host plant[J]. International Journal of Molecular Sciences, 2021, 22(5): 2651.
|
[23] |
CAO Y P, HE K X, LI Q Q, et al. Transcriptome analysis of Armillaria gallica 012 m in response to auxin[J]. Journal of Basic Microbiology, 2023, 63(1):17-25.
|
[24] |
梅锡玲, 赵洲, 陈向东, 等. 光质对灵芝菌丝体生长及内源IAA代谢调控的研究[J]. 中国中药杂志, 2013, 38(12):1887-1892.
|
[25] |
FU S F, WEI J Y, CHEN H W, et al. Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms[J]. Plant Signaling & Behavior, 2015, 10(8): e1048052.
|
[26] |
杨扬, 高克祥, 吴岩, 等. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8): 14-21.
|
[27] |
FU J, WANG S P. Insights into auxin signaling in plant-pathogen interactions[J]. Frontiers in Plant Science, 2011, 2: 74.
|
[28] |
KESWANI C, SINGH H B, HERMOSA R, et al. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents[J]. Applied Microbiology and Biotechnology, 2019, 103 (23/24): 9287-9303.
|
[29] |
GRADY E N, MACDONALD J, LIU L D, et al. Current knowledge and perspectives of Paenibacillus: a review[J]. Microbial Cell Factories, 2016, 15(1):203.
|
[30] |
DUCA D, LORV J, PATTEN C L, et al. Indole-3-acetic acid in plant-microbe interactions[J]. Antonie Van Leeuwenhoek, 2014, 106(1):85-125.
|
[31] |
ORTÍZ-CASTRO R, CONTRERAS-CORNEJO H A, MACÍAS-RODRÍGUEZ L, et al. The role of microbial signals in plant growth and development[J]. Plant Signaling & Behavior, 2009, 4(8): 701-712.
|
[32] |
SCARPELLA E, BARKOULAS M, TSIANTIS M. Control of leaf and vein development by auxin[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(1):a001511.
|
[33] |
郭米山. 沙地樟子松外生菌根真菌特性及其对樟子松幼苗的影响[D]. 北京: 北京林业大学, 2020.
|
[34] |
NIEMI K, VUORINEN T, ERNSTSEN A, et al. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro[J]. Tree Physiology, 2002, 22 (17):1231-1239.
|
[35] |
SPLIVALLO R, FISCHER U, GÖBEL C, et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene[J]. Plant Physiology, 2009, 150(4):2018-2029.
|
[36] |
冯万艳. 马尾松与粘盖乳牛肝菌共生特征研究[D]. 贵阳: 贵州大学, 2020.
|
[37] |
JENTSCHEL K, THIEL D, REHN F, et al. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization[J]. Physiologia Plantarum, 2007, 129(2):320-333.
|
[38] |
ETEMADI M, GUTJAHR C, COUZIGOU J M, et al. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2014, 166(1):281-292.
|
[39] |
ARANDA E, SAMPEDRO I, DÍAZ R. DÍAZ, et al. The effects of the arbuscular mycorrhizal fungus Glomus deserticola on growth of tomato plants grown in the presence of olive mill residues modified by treatment with saprophytic fungi[J]. Symbiosis, 2009, 47(3):133-140.
|
[40] |
赵雨迪, 苏敏, 陈旭辉. 兰科植物菌根真菌研究概述[J]. 生物学教学, 2023, 48(11):2-4.
|