浙江农业科学 ›› 2026, Vol. 67 ›› Issue (1): 136-142.DOI: 10.16178/j.issn.0528-9017.20250569

• 植保技术 • 上一篇    下一篇

露地蔬菜黄板害虫识别平台研发

褚航剑1(), 娄卫东1, 顾清1, 刘庆1, 吴弘洋2, 黄晓华3,*(), 张小斌1,*()   

  1. 1.浙江省农业科学院 数字农业研究所,浙江 杭州 310021
    2.浙江托普云农科技股份有限公司,浙江 杭州 310015
    3.浙江省植保检疫与农药管理总站,浙江 杭州 310020
  • 收稿日期:2025-08-11 出版日期:2026-01-11 发布日期:2026-01-19
  • 通讯作者: 黄晓华,张小斌
  • 作者简介:张小斌,E-mail: zhangxb@mail.zaas.ac.cn
    黄晓华,E-mail: 99483162@qq.com;
    褚航剑,主要从事机器视觉、作物表型分析等数字农业技术研究与应用。E-mail: chuhj@zaas.ac.cn
  • 基金资助:
    浙江省“三农九方”农业科技协作项目(2024SNJF074)

Development of a yellow sticky trap pest identification platform for open-field vegetables

CHU Hangjian1(), LOU Weidong1, GU Qing1, LIU Qing1, WU Hongyang2, HUANG Xiaohua3,*(), ZHANG Xiaobin1,*()   

  1. 1. Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang
    2. Zhejiang Top Cloud-Agri Technology Co., Ltd., Hangzhou 310015, Zhejiang
    3. General Station of Plant Protection Quarantine and Pesticide Management in Zhejiang Province, Hangzhou 310020, Zhejiang
  • Received:2025-08-11 Online:2026-01-11 Published:2026-01-19
  • Contact: HUANG Xiaohua,ZHANG Xiaobin

摘要:

大田虫害长期以来都是影响我国蔬菜产业高质量发展的关键因素之一,及时有效的虫害预警对保障蔬菜安全具有重要意义。本研究采用“大田+暗箱”的图像采集方法,构建了包含烟粉虱(Bemisia tabaci)、南亚果实蝇(Bactrocera tau)、甜菜白带野螟(Hymenia recurvalis)、黄曲条跳甲(Phyllotreta striolata)和叶蝉(Cicadellidae)等5种露地蔬菜常见害虫的黄板图像数据集,并基于该数据集对YOLO系列目标检测模型进行了系统性训练与性能对比分析。结果表明,YOLOv11s效果最佳,平均精度(mAP50)可达0.973。将该模型部署于云端并发布至“表型达人”微信小程序为公众提供害虫识别服务,为田间虫害防治提供了更实用的技术手段。

关键词: 露地蔬菜, 害虫识别, YOLO系列模型, 在线检测

Abstract:

Pest infestation in open fields has long been a critical factor constraining the high-quality development of China's vegetable industry. Timely and effective pest early warning is of great significance for ensuring vegetable production safety. This study established a yellow sticky trap dataset featuring 5 common vegetable pests, including Bemisia tabaci, Bactrocera tau, Hymenia recurvalis, Phyllotreta striolata, and Cicadellidae by collecting field data using a “field+darkbox” imaging approach. Based on this dataset, YOLO-series models were trained and compared for pest detection performance. The results showed that YOLOv11s performed the best, achieving a mean average precision (mAP50) of 0.973. The trained model was deployed as a WeChat Mini Program called “PhenoAI”, providing the public with pest identification services and offering a more practical technical solution for field pest control.

Key words: open-field vegetable, pest identification, YOLO-series model, online detection

中图分类号: