浙江农业科学 ›› 2022, Vol. 63 ›› Issue (11): 2652-2657.DOI: 10.16178/j.issn.0528-9017.20213218
胡施祺1(), 戴德江2,*(
), 罗金燕3, 朱洁4, 安千里1, 李斌1,*(
)
收稿日期:
2021-12-10
出版日期:
2022-11-11
发布日期:
2022-12-16
通讯作者:
戴德江,李斌
作者简介:
李斌(1978—),男,安徽望江人,教授,博士,主要从事植物病理学研究工作,E-mail:libin0571@zju.edu.cn。基金资助:
Received:
2021-12-10
Online:
2022-11-11
Published:
2022-12-16
摘要:
猕猴桃细菌性溃疡病是全球重要的植物检疫性病害,丁香假单胞杆菌猕猴桃致病变种被认为是引起猕猴桃细菌性溃疡病的主要病原菌,准确、快速、灵敏的检测方法对预防其扩散和传播至关重要。本文结合国内外相关研究报道,就猕猴桃细菌性溃疡病菌的多样性及其检测技术进行了系统的综述,重点分析比较了现有不同检测技术的优缺点,展望了猕猴桃细菌性溃疡病菌检测技术未来的发展方向,为准确、快速、灵敏地检测猕猴桃细菌性溃疡病菌提供了基础。
中图分类号:
胡施祺, 戴德江, 罗金燕, 朱洁, 安千里, 李斌. 猕猴桃溃疡病病菌的多样性及其检测技术[J]. 浙江农业科学, 2022, 63(11): 2652-2657.
检测方法 | 材料 要求 | 适用场景 | 特异性 | 检测 速度 | 工作量 | 检测 成本 |
---|---|---|---|---|---|---|
田间症状观察 | 活体植株 | 田间或实验室 | 低 | 慢 | 大 | 低 |
生物学测定 | 化学药剂 | 田间或实验室 | 中 | 慢 | 大 | 中 |
免疫学检测 | 酶标仪 | 田间或实验室 | 高 | 快 | 中 | 中 |
分子检测 | PCR仪 | 实验室 | 高 | 快 | 中 | 中 |
表1 猕猴桃细菌性溃疡病菌主要检测方法优劣势比较
检测方法 | 材料 要求 | 适用场景 | 特异性 | 检测 速度 | 工作量 | 检测 成本 |
---|---|---|---|---|---|---|
田间症状观察 | 活体植株 | 田间或实验室 | 低 | 慢 | 大 | 低 |
生物学测定 | 化学药剂 | 田间或实验室 | 中 | 慢 | 大 | 中 |
免疫学检测 | 酶标仪 | 田间或实验室 | 高 | 快 | 中 | 中 |
分子检测 | PCR仪 | 实验室 | 高 | 快 | 中 | 中 |
检测技术 | 引物名称 | 序列方向 | 引物序列(5'-3') | 产物大小/bp | 参考文献 |
---|---|---|---|---|---|
KN-PCR | KNF | Forward | CACGATACATGGGCTTATGC | 492 | [ |
KNR | Reverse | CTTTTCATCCACACACTCCG | |||
RG-PCR | PsaF1 | Forward | TTTTGCTTTGCACACCCGATTTT | 280 | [ |
PsaR2 | Reverse | CACGCACCCTTCAATCAGGATG | 175 | ||
PsaF3 | Forward | ACCTGGTGAAGTTGGTCAGAGC | |||
PsaR4 | Reverse | CGCACCCTTCAATCAGGATG | |||
双重PCR | KNF | Forward | CACGATACATGGGCTTATGC | 492 | [ |
KNR | Reverse | CTTTTCATCCACACACTCCG | 226 | ||
AvrDdpx-F | Forward | TTTCGGTGGTAACGTTGGCA | |||
AvrDdpx-R | Reverse | TTCCGCTAGGTGAAAAATGGG | |||
巢氏PCR | cf1-1 | Forward | GGCGCTCCCTCGCACTT | 665 | [ |
cf1-2 | Reverse | GGTATTGGCGGGGGTGC | 310 | ||
cf1-3 | Forward | TCCTACGGTACGACGGAGTC | |||
cf1-4 | Reverse | ACGGGGGATATGGAATAAGC | |||
巢氏PCR | B1 | Forward | GTGATTATCGGCACTGACGG | 631 | [ |
B2 | Reverse | CAAGCACACCATTGGTCATTGA | 502 | ||
KNF | Forward | CACGATACATGGGCTTATGC | |||
KNR | Reverse | CTTTTCATCCACACACTCCG | |||
PCR | F7 | Forward | CAATCATTTCGCCAGACGC | 950 | [ |
R7 | Reverse | CTACGAGGTTAGGTTCAGAGT | |||
PCR-C | P0F | Forward | CTGCAACAGGCGACGGCGAGGC | 243 | [ |
P6R | Reverse | CATAGGCTTCTGGTTTTCTTCCTGATCC | |||
Real-time PCR-E | P3F | Forward | GGTTTCGGACACCGCAGGTTCTACCGAG | 147 | |
P5R1 | Reverse | CTTCCTGATCCCCGTTACCCATCGAC | |||
Real-time PCR-F | P3F | Forward | GGTTTCGGACACCGCAGGTTCTACCGAG | 158 | |
P6R | Reverse | CATAGGCTTCTGGTTTTCTTCCTGATCC | |||
PSA LAMP | F3 | Forward | GGCTCTCCTAGCAAGCATAC | 无需电泳 | [ |
B3 | Reverse | TGAGAAGGGACGCAACCA | |||
FIP | Forward | CGGATTCGCAACGCTCCAAGATCTGCTGAGCACGTTGGTC | |||
BIP | Reverse | ACTCTTCCGCAACGAGTTTGGGTCCCCACATGGAGTTGTCT | |||
loopF | Forward | TGCCGATCGAGTATCCATTTCCT | |||
loopR | Reverse | AGCCTTTTCCGAACGGTCT | |||
PSA3 LAMP | F3 | Forward | GCTATGGAATCCATTGCGGT | ||
B3 | Reverse | CGCATCTGCTGGATCATCC | |||
FIP | Forward | ATCCCTTGCCCAGCACGAACATGAGGTCGAGGTGTCTGA | |||
BIP | Reverse | ATCCACAGTGGGTACACGGACGGGGGCACCTTCTTTCTTGG | |||
loopF | Forward | GGCCTTTTCAATGCGGTCAATATCC | |||
loopR | Reverse | GGTGTCAATCTGGTGGTGCAT | |||
Psa5(Biovar 5)-PCR | Con002F | Forward | AACTCATACCCTGCGGTCAC | 449 | [ |
Con002R | Reverse | GACACCGAGCAAAACCAAAT | |||
Con034F | Forward | CCAAACAACGTCTGGGCTAT | 450 | ||
Con034R | Reverse | TCGGCCTAGCTACGAGTGAT | |||
Con044F | Forward | AAGCGCCTTAATCTCGTTCA | 470 | ||
Con044R | Reverse | ATTCCGGATTGGGTATCACA | |||
Con067F | Forward | ATTTTAACGCCCATCTGCAC | 439 | ||
Con067R | Reverse | CTGCGGATTGCAACAGTCTA |
表2 已报道用于检测丁香假单胞猕猴桃致病变种的引物
检测技术 | 引物名称 | 序列方向 | 引物序列(5'-3') | 产物大小/bp | 参考文献 |
---|---|---|---|---|---|
KN-PCR | KNF | Forward | CACGATACATGGGCTTATGC | 492 | [ |
KNR | Reverse | CTTTTCATCCACACACTCCG | |||
RG-PCR | PsaF1 | Forward | TTTTGCTTTGCACACCCGATTTT | 280 | [ |
PsaR2 | Reverse | CACGCACCCTTCAATCAGGATG | 175 | ||
PsaF3 | Forward | ACCTGGTGAAGTTGGTCAGAGC | |||
PsaR4 | Reverse | CGCACCCTTCAATCAGGATG | |||
双重PCR | KNF | Forward | CACGATACATGGGCTTATGC | 492 | [ |
KNR | Reverse | CTTTTCATCCACACACTCCG | 226 | ||
AvrDdpx-F | Forward | TTTCGGTGGTAACGTTGGCA | |||
AvrDdpx-R | Reverse | TTCCGCTAGGTGAAAAATGGG | |||
巢氏PCR | cf1-1 | Forward | GGCGCTCCCTCGCACTT | 665 | [ |
cf1-2 | Reverse | GGTATTGGCGGGGGTGC | 310 | ||
cf1-3 | Forward | TCCTACGGTACGACGGAGTC | |||
cf1-4 | Reverse | ACGGGGGATATGGAATAAGC | |||
巢氏PCR | B1 | Forward | GTGATTATCGGCACTGACGG | 631 | [ |
B2 | Reverse | CAAGCACACCATTGGTCATTGA | 502 | ||
KNF | Forward | CACGATACATGGGCTTATGC | |||
KNR | Reverse | CTTTTCATCCACACACTCCG | |||
PCR | F7 | Forward | CAATCATTTCGCCAGACGC | 950 | [ |
R7 | Reverse | CTACGAGGTTAGGTTCAGAGT | |||
PCR-C | P0F | Forward | CTGCAACAGGCGACGGCGAGGC | 243 | [ |
P6R | Reverse | CATAGGCTTCTGGTTTTCTTCCTGATCC | |||
Real-time PCR-E | P3F | Forward | GGTTTCGGACACCGCAGGTTCTACCGAG | 147 | |
P5R1 | Reverse | CTTCCTGATCCCCGTTACCCATCGAC | |||
Real-time PCR-F | P3F | Forward | GGTTTCGGACACCGCAGGTTCTACCGAG | 158 | |
P6R | Reverse | CATAGGCTTCTGGTTTTCTTCCTGATCC | |||
PSA LAMP | F3 | Forward | GGCTCTCCTAGCAAGCATAC | 无需电泳 | [ |
B3 | Reverse | TGAGAAGGGACGCAACCA | |||
FIP | Forward | CGGATTCGCAACGCTCCAAGATCTGCTGAGCACGTTGGTC | |||
BIP | Reverse | ACTCTTCCGCAACGAGTTTGGGTCCCCACATGGAGTTGTCT | |||
loopF | Forward | TGCCGATCGAGTATCCATTTCCT | |||
loopR | Reverse | AGCCTTTTCCGAACGGTCT | |||
PSA3 LAMP | F3 | Forward | GCTATGGAATCCATTGCGGT | ||
B3 | Reverse | CGCATCTGCTGGATCATCC | |||
FIP | Forward | ATCCCTTGCCCAGCACGAACATGAGGTCGAGGTGTCTGA | |||
BIP | Reverse | ATCCACAGTGGGTACACGGACGGGGGCACCTTCTTTCTTGG | |||
loopF | Forward | GGCCTTTTCAATGCGGTCAATATCC | |||
loopR | Reverse | GGTGTCAATCTGGTGGTGCAT | |||
Psa5(Biovar 5)-PCR | Con002F | Forward | AACTCATACCCTGCGGTCAC | 449 | [ |
Con002R | Reverse | GACACCGAGCAAAACCAAAT | |||
Con034F | Forward | CCAAACAACGTCTGGGCTAT | 450 | ||
Con034R | Reverse | TCGGCCTAGCTACGAGTGAT | |||
Con044F | Forward | AAGCGCCTTAATCTCGTTCA | 470 | ||
Con044R | Reverse | ATTCCGGATTGGGTATCACA | |||
Con067F | Forward | ATTTTAACGCCCATCTGCAC | 439 | ||
Con067R | Reverse | CTGCGGATTGCAACAGTCTA |
[1] | OPGENORTH D C. Pseudomonas canker of kiwifruit[J]. Plant Disease, 1983, 67(11): 1283. |
[2] | SERIZAWA S, ICHIKAWA T, TAKIKAWA Y, et al. Occurrence of bacterial canker of kiwifruit in Japan: Description of symptoms, isolation of the pathogen and screening of bactericides[J]. Japanese Journal of Phytopathology, 1989, 55(4): 427-436. |
[3] | TAKIKAWA Y, SERIZAWA S, ICHIKAWA T, et al. Pseudomonas syringae pv. actinidiae pv. nov.: The causal bacterium of canker of kiwifruit in Japan[J]. Japanese Journal of Phytopathology, 1989, 55(4): 437-444. |
[4] | 李黎, 钟彩虹, 李大卫, 等. 猕猴桃细菌性溃疡病的研究进展[J]. 华中农业大学学报, 2013, 32(5): 124-133. |
[5] | 郭丽倩. 番茄斑驳花叶病毒和猕猴桃溃疡病菌单克隆抗体的创制及其检测应用[D]. 杭州: 浙江大学, 2020. |
[6] | 高小宁, 赵志博, 黄其玲, 等. 猕猴桃细菌性溃疡病研究进展[J]. 果树学报, 2012, 29(2): 262-268. |
[7] | SCORTICHINI M, MARCELLETTI S, FERRANTE P, et al. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen[J]. Molecular Plant Pathology, 2012, 13(7): 631-640. |
[8] | 朱海云, 安超, 李勃, 等. 猕猴桃溃疡病病原菌及检测方法研究进展[J]. 陕西农业科学, 2013, 59(4): 141-145, 153. |
[9] | 朱晓湘, 方炎祖, 廖新光. 猕猴桃溃疡病病原研究[J]. 湖南农业科学, 1993(6): 31-33. |
[10] | SCORTICHINI M. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy[J]. Plant Pathology, 1994, 43(6): 1035-1038. |
[11] | KOH Y J, NOU I S. DNA markers for identification of Pseudomonas syringae pv. actinidiae[J]. Molecules and Cells, 2002, 13(2): 309-314. |
[12] | ABELLEIRA A, LOPEZ M M, PENALVER J, et al. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Spain[J]. Plant Disease, 2011, 95(12): 1583. |
[13] | BASTAS K K, KARAKAYA A. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Turkey[J]. Plant Disease, 2012, 96(3): 452. |
[14] | DREO T, PIRC M, RAVNIKAR M, et al. First report of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit in Slovenia[J]. Plant Disease, 2014, 98(11): 1578. |
[15] | VANNESTE J L, CORNISH D A, YU J, et al. First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in new zealand[J]. Plant Disease, 2014, 98(3): 418. |
[16] | HOLEVA M C, GLYNOS P E, KARAFLA C D. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Greece[J]. Plant Disease, 2015, 99(5): 723. |
[17] | JING Z B, YAO C C, LIU Z D. Isolation and identification of Pseudomonas syringae pv. actinidiae in Shaanxi Province, China[J]. Acta Horticulturae, 2018(1218): 279-286. |
[18] | 梁英梅, 张星耀, 田呈明, 等. 陕西省猕猴桃枝干溃疡病病原菌鉴定[J]. 西北林学院学报, 2000, 15(1): 37-39. |
[19] | YANG X, YI X K, CHEN Y, et al. Identification of Pseudomonas syringae pv. actinidiae strains causing bacterial canker of kiwifruit in the Anhui Province of China, and determination of their streptomycin sensitivities[J]. Genetics and Molecular Research, 2015, 14(3): 8201-8210. |
[20] | DAI Y, CHEN Y, GAN L, et al. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Fujian Province, China[J]. Plant Disease, 2019, 103(1): 143. |
[21] | 鄢明峰. 奉新猕猴桃溃疡病病原菌鉴定、检测及室内药剂筛选[D]. 南昌: 江西农业大学, 2019. |
[22] | CHAPMAN J R, TAYLOR R K, WEIR B S, et al. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae[J]. Phytopathology, 2012, 102(11): 1034-1044. |
[23] | 朱海云, 李勃, 李燕, 等. 丁香假单胞菌猕猴桃致病变种的遗传多样性及进化关系[J]. 微生物学杂志, 2013, 33(4): 66-71. |
[24] | VANNESTE J L, YU J, CORNISH D A, et al. Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in new Zealand[J]. Plant Disease, 2013, 97(6): 708-719. |
[25] | CUNTY A, POLIAKOFF F, RIVOAL C, et al. Characterization of Pseudomonas syringae pv. actinidiae (P sa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov[J]. Plant Pathology, 2015, 64(3): 582-596. |
[26] | SAWADA H, MIYOSHI T, IDE Y. Novel MLSA group (Psa5) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia chinensis) in Japan[J]. Japanese Journal of Phytopathology, 2014, 80(3): 171-184. |
[27] | FUJIKAWA T, SAWADA H. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5[J]. Scientific Reports, 2016, 6: 21399. |
[28] | FARAHI L, GHAEMIMANESH F, MILANI S, et al. Monoclonal and polyclonal antibodies specific to human fibromodulin[J]. Iranian Journal of Biotechnology, 2019, 17(1): e2277. |
[29] | 邵宝林. 猕猴桃溃疡病风险分析及其病原鉴定检测和生物防治研究[D]. 雅安: 四川农业大学, 2013. |
[30] | CIMMINO A, IANNACCONE M, PETRICCIONE M, et al. An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides: a tool for rapid immunochemical detection of kiwifruit bacterial canker[J]. Phytochemistry Letters, 2017, 19: 136-140. |
[31] | CHEN H, HU Y, QIN K Y, et al. A serological approach for the identification of the effector hopz5 of Pseudomonas syringae pv. actinidiae: a tool for the rapid immunodetection of kiwifruit bacterial canker[J]. Journal of Plant Pathology, 2018, 100(2): 171-177. |
[32] | JUNG J S, HAN H S, JO Y S, et al. Nested PCR Detection of Pseudomonas syringae pv. actinidiae, the Causal Bacterium[J]. Research in Plant Disease, 2003, 9(3): 116-120. |
[33] | VANNESTE J L. Recent progress on detecting understanding and controlling Pseudomonas syringae pv actinidiae a short review[J]. New Zealand Plant Protection, 2013, 66: 170-177. |
[34] | REES-GEORGE J, VANNESTE J L, CORNISH D A, et al. Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S-23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions[J]. Plant Pathology, 2010, 59(3): 453-464. |
[35] | SCORTICHINI M, MARCHESI U, DI PROSPERO P. Genetic relatedness among Pseudomonas avellanae, P. syringae pv. theae and P.s. pv. actinidiae, and their identification[J]. European Journal of Plant Pathology, 2002, 108(3): 269-278. |
[36] | GALLELLI A, LAURORA A, LORETI S. Gene sequence analysis for the molecular detection of Pseudomonas syringae pv actinidiae developing diagnostic protocols[J]. Journal of Plant Pathology, 2011, 93(2): 425-435. |
[37] | BIONDI E, GALEONE A, KUZMANOVI Ć N, et al. Pseudomonas syringae pv.actinidiae detection in kiwifruit plant tissue and bleeding sap[J]. Annals of Applied Biology, 2013, 162(1): 60-70. |
[38] | 邵宝林, 刘瑶, 朱天辉, 等. 猕猴桃溃疡病菌的分子检测技术研究[J]. 植物病理学报, 2013, 43(5): 458-466. |
[39] | 周大祥, 殷幼平, 王中康, 等. 利用EMA-qPCR建立快速检测猕猴桃溃疡病菌活菌的方法[J]. 植物保护, 2017, 43(3): 143-148. |
[40] | 刘芸宏. 猕猴桃Psa-V检测方法的研究[D]. 西安: 陕西师范大学, 2019. |
[41] | GALLELLI A, TALOCCI S, PILOTTI M, et al. Real-time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker[J]. Plant Pathology, 2014, 63(2): 264-276. |
[42] | RUINELLI M, SCHNEEBERGER P H H, FERRANTE P, et al. Comparative genomics-informed design of two LAMP assays for detection of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae and discrimination of isolates belonging to the pandemic biovar 3[J]. Plant Pathology, 2017, 66(1): 140-149. |
[43] | 王一波, 祝山, 郭文通, 等. 猕猴桃细菌性溃疡病可视化LAMP检测方法的建立与应用[J]. 西北农业学报, 2021, 30(5): 761-766. |
[44] | 雷庆, 叶华智, 余中树. 猕猴桃溃疡病菌噬菌体的初步研究[J]. 安徽农业科学, 2007, 35(19): 5995-5996. |
[45] | FRAMPTON R A, TAYLOR C, HOLGUÍN MORENO A V, et al. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae[J]. Applied and Environmental Microbiology, 2014, 80(7): 2216-2228. |
[46] | NI P E, WANG L, DENG B H, et al. Characterization of a lytic bacteriophage against Pseudomonas syringae pv. actinidiae and Its Endolysin[J]. Viruses, 2021, 13(4): 631. |
[47] | PINHEIRO L A M, PEREIRA C, BARREAL M E, et al. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments[J]. Applied Microbiology and Biotechnology, 2020, 104(3): 1319-1330. |
[48] | SONG Y R, VU N T, PARK J, et al. Phage PPPL-1, A new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in kiwifruit[J]. Antibiotics, 2021, 10(5): 554. |
[49] | YU J G, LIM J A, SONG Y R, et al. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit[J]. Journal of Microbiology and Biotechnology, 2016, 26(2): 385-393. |
[1] | 吴碧君, 刘小英. 大杯蕈遗传多样性的ISSR分析[J]. 浙江农业科学, 2022, 63(3): 614-618. |
[2] | 袁方池, 林云卓雅, 邓欣, 汤沁婴, 蓝陈平, 金子, 韩宝瑜, 王梦馨. 农产品中邻苯二甲酸酯类(PAEs)的提取、检测和污染状况的研究进展[J]. 浙江农业科学, 2022, 63(11): 2619-2626. |
[3] | 陈晓龙, 应多, 包斐, 方瑞秋. 浙江省50份甜玉米核心种质资源遗传多样性分析[J]. 浙江农业科学, 2022, 63(10): 2258-2262. |
[4] | 杨速, 操勇清, 李海英, 卢立志, 李国勤, 曾涛, 陈黎, 黄希东, 沈军达, 陶争荣, 田勇. 拜城油鸡生产性能及遗传多样性分析[J]. 浙江农业科学, 2021, 62(7): 1438-1442. |
[5] | 洪霞, 陈孝赏, 王娇阳, 屈为栋, 邱莉萍, 陈银龙. 芋种质叶绿体基因trnH-psbA序列特征及遗传多样性分析[J]. 浙江农业科学, 2021, 62(11): 2274-2276. |
[6] | 张炯, 严斌, 高营, 薛晨晨, 陈新, 袁星星. 蚕豆种质资源主要农艺性状遗传多样性分析[J]. 浙江农业科学, 2020, 61(6): 1109-1114. |
[7] | 刘颖, 张鹏, 王铁杆, 任鹏. 浙南坛紫菜实验品系与传统品系遗传多样性的AFLP分析[J]. 浙江农业科学, 2020, 61(6): 1157-1161. |
[8] | 刘颖, 张鹏, 王铁杆, 任鹏. 我国东南沿海野生坛紫菜遗传多样性的AFLP分析[J]. 浙江农业科学, 2020, 61(6): 1189-1194. |
[9] | 尹晓蛟, 何银生, 王智, 吴德智, 周武先, 杨旭. 基于表型的重楼属种质遗传多样性分析[J]. 浙江农业科学, 2020, 61(5): 960-964. |
[10] | 何金宇, 刘玉洋, 徐靖, 王晓彤, 陈晓俊, 王慧中, 卢江杰. 灵芝全基因组SSR标记开发及其种质资源遗传多样性评估[J]. 浙江农业科学, 2020, 61(5): 967-973. |
[11] | 慎佩晶, 张宇飞, 李喜莲, 徐洋, 程海华, 陈雪峰. 5个罗氏沼虾群体微卫星遗传多样性分析[J]. 浙江农业科学, 2020, 61(11): 2377-2381. |
[12] | 娄艳华, 刘瑜, 何卫中, 吉庆勇, 郑生宏. 76份浙江丽水茶树种质资源的生化成分多样性分析[J]. 浙江农业科学, 2020, 61(10): 1990-1993. |
[13] | 王伟科, 陆娜. 8个秀珍菇菌株遗传亲缘关系初步分析[J]. 浙江农业科学, 2019, 60(5): 727-729. |
[14] | 王凌云, 杨梦飞, 李怡鹏, 张尚法, 郑寨生. 基于ISSR技术的茭白种质资源遗传多样性[J]. 浙江农业科学, 2019, 60(5): 732-735. |
[15] | 蒋笑丽, 章建红, 李玉祥, 王正加. 基于ISSR分子标记的石楠属植物遗传多样性分析[J]. 浙江农业科学, 2019, 60(4): 636-639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||