浙江农业科学 ›› 2023, Vol. 64 ›› Issue (6): 1417-1425.DOI: 10.16178/j.issn.0528-9017.20230148
收稿日期:
2023-03-03
出版日期:
2023-06-11
发布日期:
2023-06-07
通讯作者:
赵红玉(1986—),女,山东泰安人,副研究员,博士,研究方向为植物营养学,E-mail:zhy200869@163.com。
作者简介:
邵俊雯(1997—),女,安徽马鞍山人,硕士研究生,研究方向为生物化学与分子生物学,E-mail:shaojunwen412@163.com。
基金资助:
Received:
2023-03-03
Online:
2023-06-11
Published:
2023-06-07
摘要:
硫元素是植物生长发育所必需的矿物质营养元素,主要参与光合作用、呼吸作用、氮固定、蛋白质和脂类合成等重要生理生化过程。植物通过硫酸盐转运体以硫酸根(SO42-)的形式从土壤中吸收硫酸盐。当硫酸盐被吸收进入根系细胞内部后,植物通过质外体和共质体两种养分的运输途径将其运输到根中维管束,进而加载到地上部。当外界硫素充足时,植物将吸收的过量硫储存在液泡中,一旦土壤中硫素缺乏时,液泡储存的硫会释放到细胞质中,进行再分配,以维持植物体内硫酸盐的平衡。到目前为止,硫酸盐转运体的研究主要集中在模式植物拟南芥,对其他植物中的研究还较少。硫缺乏会严重抑制植物的正常生长。在进化过程中植物形成了一整套应对缺硫的分子机制来增加硫的吸收、运输和利用,调节自身的生长发育,其中,硫酸盐转运蛋白在应对硫胁迫过程中起重要的作用。本文将重点阐述植物中硫酸盐从土壤吸收进根系、运输和再分配的分子机制,并对今后的植物硫素吸收转运的研究重点进行展望。
中图分类号:
邵俊雯, 王婉瑕, 李瑞莉, 赵红玉. 植物硫酸盐转运体研究进展[J]. 浙江农业科学, 2023, 64(6): 1417-1425.
基因 | 亚细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR1;1 | 细胞质膜 | 根毛、根尖的表皮和皮层细胞 | 高亲和硫酸盐转运体,负责根从外界吸收硫酸盐 |
AtSULTR1;2 | 细胞质膜 | 根毛、根尖的表皮和皮层细胞 | 高亲和硫酸盐转运体,负责根从外界吸收硫酸盐 |
AtSULTR1;3 | 细胞质膜 | 子叶和根的韧皮部 | 高亲和硫酸盐转运体,调控硫酸盐由源到库的再分配 |
表1 拟南芥中硫酸盐转运体第一亚家族基因的功能
基因 | 亚细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR1;1 | 细胞质膜 | 根毛、根尖的表皮和皮层细胞 | 高亲和硫酸盐转运体,负责根从外界吸收硫酸盐 |
AtSULTR1;2 | 细胞质膜 | 根毛、根尖的表皮和皮层细胞 | 高亲和硫酸盐转运体,负责根从外界吸收硫酸盐 |
AtSULTR1;3 | 细胞质膜 | 子叶和根的韧皮部 | 高亲和硫酸盐转运体,调控硫酸盐由源到库的再分配 |
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR2;1 | 未知 | 根木质部薄壁细胞和中柱鞘细胞,叶片的木质部薄壁细胞和韧皮部细胞 | 低亲和的硫酸盐转运体,负责硫酸盐从根到地上部的转移 |
AtSULTR2;2 | 未知 | 根的韧皮部细胞和叶片的维管束鞘细胞 | 低亲和的硫酸盐转运体,负责硫酸盐从根到地上部的转移 |
表2 拟南芥中硫酸盐转运体第二亚家族基因的功能
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR2;1 | 未知 | 根木质部薄壁细胞和中柱鞘细胞,叶片的木质部薄壁细胞和韧皮部细胞 | 低亲和的硫酸盐转运体,负责硫酸盐从根到地上部的转移 |
AtSULTR2;2 | 未知 | 根的韧皮部细胞和叶片的维管束鞘细胞 | 低亲和的硫酸盐转运体,负责硫酸盐从根到地上部的转移 |
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR3;1 | 叶绿体膜 | 主要在叶片,在花和种子中也有表达 | 将胞质中的硫酸盐转运到叶绿体 |
AtSULTR3;2 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;3 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;4 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;5 | 细胞质膜 | 根的中柱鞘和木质部薄壁细胞 | 负责硫酸盐从根到地上部的转运 |
表3 拟南芥中硫酸盐转运体第三亚家族基因的功能
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR3;1 | 叶绿体膜 | 主要在叶片,在花和种子中也有表达 | 将胞质中的硫酸盐转运到叶绿体 |
AtSULTR3;2 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;3 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;4 | 未知 | 叶片 | 可能参与叶绿体中硫酸盐的转运 |
AtSULTR3;5 | 细胞质膜 | 根的中柱鞘和木质部薄壁细胞 | 负责硫酸盐从根到地上部的转运 |
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR4;1 | 液泡膜 | 根的中柱鞘、木质部薄壁细胞、下胚轴和种子,缺硫条件下地上部表达增强 | 液泡中硫酸盐的输出、参与糖代谢和解毒作用 |
AtSULTR4;2 | 液泡膜 | 根的中柱鞘、木质部薄壁细胞、下胚轴和叶,缺硫条件下地上部表达增强 | 液泡中硫酸盐的输出 |
表4 拟南芥中硫酸盐转运体第四亚家族基因的功能
基因 | 细胞定位 | 表达部位 | 功能 |
---|---|---|---|
AtSULTR4;1 | 液泡膜 | 根的中柱鞘、木质部薄壁细胞、下胚轴和种子,缺硫条件下地上部表达增强 | 液泡中硫酸盐的输出、参与糖代谢和解毒作用 |
AtSULTR4;2 | 液泡膜 | 根的中柱鞘、木质部薄壁细胞、下胚轴和叶,缺硫条件下地上部表达增强 | 液泡中硫酸盐的输出 |
图1 拟南芥中硫酸盐的吸收和运输 蓝色的箭头指示的是SULTR1;1和SULTR1;2介导的硫酸盐运输;橘色的箭头指示的是SULTR2;1和SULTR2;2介导的硫酸盐运输;灰色的箭头指示的是SULTR2;1、SULTR3;5和SULTR1;3介导的硫酸盐运输;绿色的箭头指示的是SULTR3;1介导的硫酸盐运输,紫色的箭头指示的是液泡定位的SULTR4;1和SULTR4;2介导的硫酸盐运输。
[1] | ANJUM N A, GILL R, KAUSHIK M, et al. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance[J]. Frontiers in Plant Science, 2015, 6: 210. |
[2] | KUMAR S, ASIF M H, CHAKRABARTY D, et al. Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions[J]. Functional & Integrative Genomics, 2011, 11(2): 259-273. |
[3] | YI H, RAVILIOUS G E, GALANT A, et al. From sulfur to homoglutathione: thiol metabolism in soybean[J]. Amino Acids, 2010, 39(4): 963-978. |
[4] | OHKAMA N, TAKEI K, SAKAKIBARA H, et al. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2002, 43(12): 1493-1501. |
[5] | LEUSTEK T, MARTIN M N, BICK J A, et al. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 141-165. |
[6] | LEUSTEK T, SAITO K. Sulfate transport and assimilation in plants[J]. Plant Physiology, 1999, 120(3): 637-644. |
[7] | ÁLVAREZ C, ÁNGELES BERMÚDEZ M, ROMERO L C, et al. Cysteine homeostasis plays an essential role in plant immunity[J]. The New Phytologist, 2012, 193(1): 165-177. |
[8] | TAKAHASHI H, KOPRIVA S, GIORDANO M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes[J]. Annual Review of Plant Biology, 2011, 62: 157-184. |
[9] | XIANG C B, WERNER B L, CHRISTENSEN E M, et al. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels[J]. Plant Physiology, 2001, 126(2): 564-574. |
[10] | NARAYAN O P, KUMAR P, YADAV B, et al. Sulfur nutrition and its role in plant growth and development[J]. Plant Signaling & Behavior, 2022: 2030082. |
[11] | SHAWL, ASSEFA. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia[J]. Heliyon, 2021, 7(3): e06614. |
[12] | 马强. 土壤与植物中的硫素营养研究进展[J]. 农技服务, 2011, 28(2): 165-167. |
[13] | SMITH F W, EALING P M, HAWKESFORD M J, et al. Plant members of a family of sulfate transporters reveal functional subtypes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(20): 9373-9377. |
[14] | ROUACHED H, BERTHOMIEU P, EL KASSIS E, et al. Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2[J]. The Journal of Biological Chemistry, 2005, 280(16): 15976-15983. |
[15] | ARAVIND L, KOONIN E V. The STAS domain-a link between anion transporters and antisigma-factor antagonists[J]. Current Biology: CB, 2000, 10(2): R53-R55. |
[16] | YOSHIMOTO N, INOUE E, SAITO K, et al. Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis[J]. Plant Physiology, 2003, 131(4): 1511-1517. |
[17] | TAKAHASHI H, WATANABE-TAKAHASHI A, SMITH F W, et al. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana[J]. The Plant Journal, 2000, 23(2): 171-182. |
[18] | HOWARTH J R, FOURCROY P, DAVIDIAN J C, et al. Cloning of two contrasting high-affinity sulfate transporters from tomato induced by low sulfate and infection by the vascular pathogen Verticillium dahliae[J]. Planta, 2003, 218(1): 58-64. |
[19] | VAROL C, MILDNER A, JUNG S. Macrophages: development and tissue specialization[J]. Annual Review of Immunology, 2015, 33: 643-675. |
[20] | GASBER A, KLAUMANN S, TRENTMANN O, et al. Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate[J]. Plant Biology, 2011, 13(5): 710-718. |
[21] | ZUBER H, DAVIDIAN J C, WIRTZ M, et al. Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization[J]. BMC Plant Biology, 2010, 10: 78. |
[22] | KATAOKA T, WATANABE-TAKAHASHI A, HAYASHI N, et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis[J]. The Plant Cell, 2004, 16(10): 2693-2704. |
[23] | ZHANG H J, HAO X Y, ZHANG J J, et al. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium[J]. Protoplasma, 2022, 259(1): 127-140. |
[24] | YAMAJI N, TAKEMOTO Y, MIYAJI T, et al. Erratum: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node[J]. Nature, 2017, 543(7643): 136. |
[25] | VATANSEVER R, KOC I, OZYIGIT I I, et al. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.)[J]. Planta, 2016, 244(6): 1167-1183. |
[26] | QIN, HUANG. The SULTR gene family in maize (Zea mays L.): gene cloning and expression analyses under sulfate starvation and abiotic stress[J]. Journal of Plant Physiology, 2018, 220: 24-33. |
[27] | WANG L, CHEN K H, ZHOU M. Structure and function of an Arabidopsis thaliana sulfate transporter[J]. Nature Communications, 2021, 12: 4455. |
[28] | ROUACHED H, WIRTZ M, ALARY R, et al. Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis[J]. Plant Physiology, 2008, 147(2): 897-911. |
[29] | BARBERON M, BERTHOMIEU P, CLAIROTTE M, et al. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2[J]. The New Phytologist, 2008, 180(3): 608-619. |
[30] | MARUYAMA-NAKASHITA A, INOUE E, WATANABE-TAKAHASHI A, et al. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways[J]. Plant Physiology, 2003, 132(2): 597-605. |
[31] | MARUYAMA-NAKASHITA A, WATANABE-TAKAHASHI A, INOUE E, et al. Sulfur-responsive elements in the 3'-nontranscribed intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency[J]. The Plant Cell, 2015, 27(4): 1279-1296. |
[32] | RAE A L, SMITH F W. Localisation of expression of a high-affinity sulfate transporter in barley roots[J]. Planta, 2002, 215(4): 565-568. |
[33] | VIDMAR J J, SCHJOERRING J K, TOURAINE B, et al. Regulation of the hvst1 gene encoding a high-affinity sulfate transporter from Hordeum vulgare[J]. Plant Molecular Biology, 1999, 40(5): 883-892. |
[34] | FRACHISSE J M, THOMINE S, COLCOMBET J, et al. Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells[J]. Plant Physiology, 1999, 121(1): 253-262. |
[35] | KATAOKA T, HAYASHI N, YAMAYA T, et al. Root-to-shoot transport of sulfate in Arabidopsis. evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature[J]. Plant Physiology, 2004, 136(4): 4198-4204. |
[36] | TAKAHASHI H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination[J]. Journal of Experimental Botany, 2019, 70(16): 4075-4087. |
[37] | CAO M J, WANG Z, WIRT Z M, et al. SULTR 3.1 is a chloroplast-10 calized sulfate transporter in Arabidopsis thaliand[J]. Plant Journal, 2013, 73(4):607-616. |
[38] | BANERJEE S. Plant sulfate transporters dealing with drought and salinity stress-ScienceDirect[J]. Transporters and Plant Osmotic Stress, 2021:77-87. |
[39] | MARUYAMA-NAKASHITA A, NAKAMURA Y, WATANABE-TAKAHASHI A, et al. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots[J]. The Plant Journal, 2005, 42(3): 305-314. |
[40] | 盛大海, 刘元英, 李广宇. 水稻源库关系研究进展与应用[J]. 东北农业大学学报, 2009, 40(5): 117-122. |
[41] | 霍中洋, 叶全宝, 李华, 等. 水稻源库关系研究进展[J]. 中国农学通报, 2002, 18(6): 72-77, 148. |
[42] | 郑华, 屠乃美. 水稻源库关系研究现状与展望[J]. 作物研究, 2000, 14(3): 37-44. |
[43] | ROUACHED H. Multilevel coordination of phosphate and sulfate homeostasis in plants[J]. Plant Signaling & Behavior, 2011, 6(7): 952-955. |
[44] | 曹恭, 梁鸣早. 硫: 平衡栽培体系中植物必需的中量元素[J]. 土壤肥料, 2003(1): 50-52, 49. |
[45] | BUCHNER P, PARMAR S, KRIEGEL A, et al. The sulfate transporter family in wheat: tissue-specific gene expression in relation to nutrition[J]. Molecular Plant, 2010, 3(2): 374-389. |
[46] | MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation[J]. The Plant Journal, 2004, 38(5): 779-789. |
[47] | SMITH F W, HAWKESFORD M J, EALING P M, et al. Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter[J]. The Plant Journal, 1997, 12(4): 875-884. |
[48] | GUTIERREZ-MARCOS J F, ROBERTS M A, CAMPBELL E I, et al. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(23): 13377-13382. |
[49] | KAWASHIMA C G, YOSHIMOTO N, MARUYAMA-NAKASHITA A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types[J]. The Plant Journal, 2009, 57(2): 313-321. |
[50] | MARUYAMA-NAKASHITA A, NAKAMURA Y, YAMAYA T, et al. Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation[J]. Journal of Experimental Botany, 2004, 55(404): 1843-1849. |
[51] | VAUCLARE P, KOPRIVA S, FELL D, et al. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols[J]. The Plant Journal, 2002, 31(6): 729-740. |
[52] | LAPPARTIENT A G, VIDMAR J J, LEUSTEK T, et al. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound[J]. The Plant Journal, 1999, 18(1): 89-95. |
[53] | KAWASHIMA C G, MATTHEWMAN C A, HUANG S Q, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis[J]. The Plant Journal, 2011, 66(5): 863-876. |
[54] | JONES-RHOADES M W, BARTEL D P, BARTEL B. MicroRNAS and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57: 19-53. |
[55] | MARUYAMA-NAKASHITA A, NAKAMURA Y, TOHGE T, et al. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism[J]. The Plant Cell, 2006, 18(11): 3235-3251. |
[56] | WANG Z Y, RUAN W Y, SHI J, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14953-14958. |
[57] | GALLARDO K, COURTY P E, LE SIGNOR C, et al. Sulfate transporters in the plant's response to drought and salinity: regulation and possible functions[J]. Frontiers in Plant Science, 2014, 5: 580. |
[58] | JONES-RHOADES M W, BARTEL D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. |
[59] | SHINDO M, SHIMOMURA K, YAMAGUCHI S, et al. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice[J]. Plant Direct, 2018, 2(4): e00050. |
[1] | 毛英, 沈宁东, 张锦梅, 满丽婷, 马光花, 罗旭鹏. 花叶丁香的开花特性与繁育系统研究[J]. 浙江农业科学, 2023, 64(6): 1529-1533. |
[2] | 杨月, 程远, 阮美颖, 王荣青, 叶青静, 姚祝平, 周国治, 万红建. 蔗糖转化酶抑制蛋白研究进展[J]. 浙江农业科学, 2023, 64(5): 1236-1241. |
[3] | 方丽, 叶琪明, 郭方其, 周勤, 徐丹彬, 谢昀烨, 武军, 王汉荣. 非洲菊菌核病的抗性鉴定方法比较[J]. 浙江农业科学, 2022, 63(12): 2939-2941. |
[4] | 董斯琳, 姚桐桐, 谢琳淼, 孙广玉, 敖红. 哈茨木霉对镉胁迫下草地早熟禾的促生和增抗效应及其生理机制[J]. 浙江农业科学, 2022, 63(9): 2046-2053. |
[5] | 莫健彬, 蒋昌华. 铁线莲品种耐热生理指标检测[J]. 浙江农业科学, 2022, 63(5): 1094-1097. |
[6] | 李金枝, 王晓燕. 干旱胁迫下水稻和水花生的抗旱生理学[J]. 浙江农业科学, 2019, 60(6): 915-917. |
[7] | 笪文怡, 权秋梅, 余茂蕾, 张倚铭, 唐娅. 车前光合生理特性的研究[J]. 浙江农业科学, 2018, 59(1): 58-63. |
[8] | 李晓梅, 李爱卿, 赵晓东, 冯玉兰. 氯化钠胁迫对菊芋幼苗生长和叶片抗氧化酶活性的影响[J]. 浙江农业科学, 2017, 58(12): 2206-2209. |
[9] | 周金波, 汪峰, 金树权, 王丽丽, 徐强. 不同材料生物炭对镉污染土壤修复和青菜镉吸收的影响[J]. 浙江农业科学, 2017, 58(9): 1559-1560. |
[10] | 王鑫, 笪文怡, 唐娅. 野生地果的光合日进程及其影响因子[J]. 浙江农业科学, 2017, 58(8): 1391-1393. |
[11] | 彭安琪, 林夏珍, 刘玉成. 朝鲜婆婆纳对干旱胁迫的生理响应[J]. 浙江农业科学, 2017, 58(7): 1237-1241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||