[1] |
RAIESI F, RAZMKHAH M, KIANI S. Salinity stress accelerates the effect of cadmium toxicity on soil N dynamics and cycling: does joint effect of these stresses matter?[J]. Ecotoxicology and Environmental Safety, 2018, 153: 160-167.
|
[2] |
CHAI M W, SHI F C, LI R L, et al. Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae)[J]. Plant Growth Regulation, 2013, 71(2): 171-179.
|
[3] |
主朋月, 韩冰, 王晓阳, 等. 印度梨形孢联合紫花苜蓿修复土壤镉污染研究[J]. 环境科学与技术, 2019, 42(6): 21-27.
|
[4] |
HSU S H, WANG S L, HUANG J H, et al. Effects of rice straw ash amendment on Cd solubility and distribution in a contaminated paddy soil under submergence[J]. Paddy and Water Environment, 2015, 13(1): 135-143.
|
[5] |
李秀珍, 李彬. 重金属对植物生长发育及品质的影响[J]. 安徽农业科学, 2008, 36(14): 5742-5746.
|
[6] |
LALOR G C. Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment[J]. Science of the Total Environment, 2008, 400(1/2/3): 162-172.
|
[7] |
陆敏英, 包晓东, 吴兴飞, 等. 草坪修复污泥中重金属的研究与应用[J]. 生态学杂志, 2019, 38(4): 1212-1220.
|
[8] |
高长敏, 马光恕, 廉华, 等. 木霉菌对黄瓜幼苗生长和膜脂过氧化指标的影响及对枯萎病的防治效果[J]. 中国生物防治学报, 2018, 34(5): 762-770.
|
[9] |
张雅静, 宋美燕, 张怡静, 等. 兼防黄瓜根腐病和根结线虫病的淡紫拟青霉和哈茨木霉的筛选[J]. 生物技术通报, 2021, 37(2): 40-50.
|
[10] |
郭成瑾, 沈瑞清, 张丽荣, 等. 哈茨木霉协同秸秆对马铃薯黑痣病及根际土壤微生态的影响[J]. 核农学报, 2020, 34(7): 1447-1455.
|
[11] |
朱洪江, 王勇, 刘东阳, 等. 哈茨木霉对烟草青枯病田间控制效果及生物学性状的影响[J]. 植物医生, 2019, 32(5): 26-31.
|
[12] |
MASUNAKA A, HYAKUMACHI M, TAKENAKA S. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus[J]. Microbes and Environments, 2011, 26(2): 128-134.
|
[13] |
HARMAN G E. Overview of mechanisms and uses of Trichoderma spp[J]. Phytopathology, 2006, 96(2): 190-194.
|
[14] |
MARTÍNEZ-MEDINA A, DEL MAR ALGUACIL M, PASCUAL J A, et al. Phytohormone profiles induced by Trichoderma isol correspond with their biocontrol and plant growth-promoting activity on melon plants[J]. Journal of Chemical Ecology, 2014, 40(7): 804-815.
|
[15] |
刘畅, 张欣玥, 蔡汶妤, 等. 绿色木霉与哈茨木霉对黄瓜幼苗促生作用机理的研究[J]. 江苏农业科学, 2020, 48(16): 156-160.
|
[16] |
BAE H H, SICHER R C, KIM M S, et al. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. Journal of Experimental Botany, 2009, 60(11): 3279-3295.
|
[17] |
李舒依, 李方乐, 王颖杰, 等. NaCl胁迫下哈茨木霉对黄瓜种子萌发的影响[J]. 科学技术与工程, 2016, 16(9): 164-166.
|
[18] |
付健, 王玉凤, 张翼飞, 等. 不同木霉菌对寒地盐碱土壤玉米杂交种光合特性及活性氧代谢的影响[J]. 黑龙江八一农垦大学学报, 2021, 33(1): 7-14.
|
[19] |
梁刚. 肥料对草地早熟禾草坪草生长的影响研究[J]. 现代园艺, 2020, 43(22): 5-6.
|
[20] |
许僖, 伍建榕, 韩长志, 等. 全基因组预测哈茨木霉T6776的分泌蛋白[J]. 贵州农业科学, 2018, 46(2): 5-8.
|
[21] |
梁志怀, 魏林, 郑明福, 等. 哈茨木霉发酵产物对豇豆产量和品质的影响[J]. 湖南农业科学, 2005(5): 38-40, 43.
|
[22] |
李艳娟, 刘博, 庄正, 等. 哈茨木霉与绿色木霉对杉木种子萌发和幼苗生长的影响[J]. 应用生态学报, 2017, 28(9): 2961-2966.
|
[23] |
CONTRERAS-CORNEJO H A, MACÍAS-RODRÍGUEZ L, CORTÉS-PENAGOS C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149(3): 1579-1592.
|
[24] |
朱衍杰, 张秀省, 穆红梅. 康宁霉素对国槐种子萌发过程中生理指标的影响[J]. 经济林研究, 2014, 32(2): 88-92.
|
[25] |
韩航, 陈雪娇, 侯晓龙, 等. Cd胁迫对类芦生长及酶活性的影响[J]. 农业环境科学学报, 2016, 35(4): 647-653.
|
[26] |
鲜靖苹, 柴澍杰, 王勇, 等. 镉胁迫对草地早熟禾生长与生理代谢的影响[J]. 核农学报, 2019, 33(1): 176-186.
|
[27] |
罗勇, 焦桂珍, 刘胜波, 等. 不同浓度镉对烟草幼苗生长发育及生长素相关基因表达的影响[J]. 中国农业科技导报, 2021, 23(1): 58-65.
|
[28] |
龚双姣, 马陶武, 李菁, 等. 镉胁迫下三种藓类植物的细胞伤害及光合色素含量的变化[J]. 应用生态学报, 2010, 21(10): 2671-2676.
|
[29] |
汤惠华, 杨涛, 胡宏友, 等. 镉对花椰菜光合作用的影响及其在亚细胞中的分布[J]. 园艺学报, 2008, 35(9): 1291-1296.
|
[30] |
GUO B, LIANG Y C, ZHU Y G, et al. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress[J]. Environmental Pollution, 2007, 147(3): 743-749.
|
[31] |
SINGH H P, BATISH D R, KAUR G, et al. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J]. Environmental and Experimental Botany, 2008, 63(1/2/3): 158-167.
|
[32] |
任翔, 杨雨薇, 陆叶, 等. 外源硅酸钾对高温胁迫下紫花苜蓿生长生理的影响[J]. 扬州大学学报(农业与生命科学版), 2020, 41(3): 108-112.
|
[33] |
LIN Y F, AARTS M G M. The molecular mechanism of zinc and cadmium stress response in plants[J]. Cellular and Molecular Life Sciences: CMLS, 2012, 69(19): 3187-3206.
|
[34] |
杨居荣, 贺建群, 蒋婉茹. Cd污染对植物生理生化的影响[J]. 农业环境保护, 1995, 14(5): 193-197.
|
[35] |
井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7): 1809-1816.
|
[36] |
KORNYEYEV D, LOGAN B A, PAYTON P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiologia Plantarum, 2001, 113(3): 323-331.
|
[37] |
刘俊祥. 多年生黑麦草对重金属镉的抗性机理研究[D]. 北京: 中国林业科学研究院, 2012.
|
[38] |
卜和申, 谢燕, 徐倩, 等. 哈茨木霉的耐镉性及其对狗牙根耐镉能力的影响[J]. 草地学报, 2020, 28(1): 64-71.
|
[39] |
梁泰帅, 刘昌欣, 康靖全, 等. 硫对镉胁迫下小白菜镉富集、光合速率等生理特性的影响[J]. 农业环境科学学报, 2015, 34(8): 1455-1463.
|