浙江农业科学 ›› 2023, Vol. 64 ›› Issue (10): 2575-2582.DOI: 10.16178/j.issn.0528-9017.20221020
收稿日期:
2022-09-29
出版日期:
2023-10-11
发布日期:
2023-10-24
作者简介:
刘慧(1997—),女,山东青岛人,硕士,主要从事植物与微生物互作研究,E-mail:liu_hui1997@163.com。
Received:
2022-09-29
Online:
2023-10-11
Published:
2023-10-24
摘要:
细菌鞭毛结构和组装的高度复杂性要求鞭毛在合成过程中遵循严格的级联调控。flhDC位于级联调控的顶端,是革兰氏阴性菌鞭毛生物合成的主要调节因子。flhDC在调控鞭毛运动以应对外界环境和营养变化的同时也受到全局性调控、群体感应、新陈代谢和环境信号等因素的影响。根际生防微生物制剂的合理使用可以降低化学肥料和杀虫剂对土壤的污染。能够在植物根部定殖是植物生长促进根际细菌(PGPR)促生的前提,flhDC在此过程中发挥着不可或缺的作用。本文综述了革兰氏阴性菌中鞭毛主调控因子flhDC在转录水平、mRNA翻译水平、翻译后水平受到的多重调节,讨论了flhDC在PGPR植物根表定殖过程中发挥的作用,主要包括flhDC调控PGPR运动性,参与PGPR生物膜合成,提高PGPR在植物根表定殖的稳定性。
中图分类号:
刘慧, 蓝明明, 邢蕾蕾. 鞭毛主调控因子flhDC调控机制及其在PGPR定殖中的功能[J]. 浙江农业科学, 2023, 64(10): 2575-2582.
[1] | 曾县平. 细菌鞭毛系统的研究进展[J]. 安徽农业科学, 2012, 40(27): 13215-13217,13222. |
[2] | ARMITAGE J P, BERRY R M. Assembly and dynamics of the bacterial flagellum[J]. Annual Review of Microbiology, 2020, 74: 181-200. |
[3] | NAKAMURA S, MINAMINO T. Flagella-driven motility of bacteria[J]. Biomolecules, 2019, 9(7):279. |
[4] | AL-OTAIBI N S, TAYLOR A J, FARRELL D P, et al. The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation[J]. Nature Communications, 2020, 11(1):3210. |
[5] | CHEVANCE F F V, HUGHES K T. Coupling of flagellar gene expression with assembly in Salmonella enterica[J]. Methods in Molecular biology, 2017, 1593: 47-71. |
[6] | SOUTOURINA O A, BERTIN P N. Regulation cascade of flagellar expression in Gram-negative bacteria[J]. FEMS Microbiology Reviews, 2003, 27(4): 505-523. |
[7] | FITZGERALD D M, BONOCORA R P, WADE J T. Comprehensive mapping of the Escherichia coli flagellar regulatory network[J]. PLoS Genetics, 2014, 10(10): e1004649. |
[8] | KNIGHTS H E, JORRIN B, HASKETT T L, et al. Deciphering bacterial mechanisms of root colonization[J]. Environmental Microbiology Reports, 2021, 13(4): 428-444. |
[9] | SANTOYO G, URTIS-FLORES C A, LOEZA-LARA P D, et al. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR)[J]. Biology, 2021, 10(6): 475. |
[10] | REINHOLD-HUREK B, BÜNGER W, BURBANO C S, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annual Review of Phytopathology, 2015, 53: 403-424. |
[11] | FITZGERALD D M, BONOCORA R P, WADE J T. Comprehensive mapping of the Escherichia coli flagellar regulatory network[J]. PLoS Genetics, 2014, 10(10): e1004649. |
[12] | SMITH T G, HOOVER T R. Deciphering bacterial flagellar gene regulatory networks in the genomic era[J]. Advances in Applied Mircobiology, 2009, 67: 257-295. |
[13] | WANG S Y, FLEMING R T, WESTBROOK E M, et al. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription[J]. Journal of Molecular Biology, 2006, 355(4): 798-808. |
[14] | LIU X, MATSUMURA P. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons[J]. Journal of Bacteriology, 1994, 176(23): 7345-7351. |
[15] | CHILCOTT G S, HUGHES K T. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli[J]. Microbiology and Molecular Biology Reviews, 2000, 64(4): 694-708. |
[16] | LIU X, FUJITA N, ISHIHAMA A, et al. The C-terminal region of the alpha subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex[J]. Journal of Bacteriology, 1995, 177(17): 5186-5188. |
[17] | UTSEY K, KEENER J P. A mathematical model of flagellar gene regulation and construction in Salmonella enterica[J]. PLoS Computational Biology, 2020, 16(10): e1007689. |
[18] | CHADSEY M S, KARLINSEY J E, HUGHES K T. The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme[J]. Genes & Development, 1998, 12(19): 3123-3136. |
[19] | MIZUSHIMA T, KOYANAGI R, KATAYAMA T, et al. Decrease in expression of the master operon of flagellin synthesis in a DnaA46 mutant of Escherichia coli[J]. Biological & Pharmaceutical Bulletin, 1997, 20(4): 327-331. |
[20] | SIMMS A N, MOBLEY H L T. Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae[J]. Journal of Bacteriology, 2008, 190(10): 3747-3756. |
[21] | MOUSLIM C, HUGHES K T. The Effect of Cell Growth Phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression[J]. PLoS Pathogens, 2014, 10(3): e1003987. |
[22] | MANGAN M W, LUCCHINI S, CRÓINÍN T Ó, et al. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium[J]. Microbiology, 2011, 157(Pt 4): 1075-1087. |
[23] | PONTIGGIA A, NEGRI A, BELTRAME M, et al. Protein HU binds specifically to kinked DNA[J]. Molecular Microbiology, 1993, 7(3): 343-350. |
[24] | BERTIN P, TERAO E, LEE E H, et al. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli[J]. Journal of Bacteriology, 1994, 176(17): 5537-5540. |
[25] | SOUTOURINA O A, KRIN E, LAURENT-WINTER C, et al. Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein[J]. Microbiology, 2002, 148(Pt 5): 1543-1551. |
[26] | KO M, PARK C. H-NS-dependent regulation of flagellar synthesis is mediated by a LysR family protein[J]. Journal of Bacteriology, 2000, 182(16): 4670-4672. |
[27] | CAMPOY S, JARA M, BUSQUETS N, et al. Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants[J]. Microbiology, 2002, 148(Pt 4): 1039-1048. |
[28] | WINTER S E, WINTER M G, THIENNIMITR P, et al. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity[J]. Molecular Microbiology, 2009, 74(1): 175-193. |
[29] | FRANCEZ-CHARLOT A, LAUGEL B, VAN GEMERT A, et al. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli[J]. Molecular Microbiology, 2003, 49(3): 823-832. |
[30] | HUANG W C, LIN C Y, HASHIMOTO M, et al. The role of the bacterial protease Prc in the uropathogenesis of extraintestinal pathogenic Escherichia coli[J]. Journal of Biomedical Science, 2020, 27(1): 14. |
[31] | WANG Q F, ZHAO Y F, MCCLELLAND M, et al. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes[J]. Journal of Bacteriology, 2007, 189(23): 8447-8457. |
[32] | KIM J, KANG Y, CHOI O, et al. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae[J]. Molecular Microbiology, 2007, 64(1): 165-179. |
[33] | JANG M S, GOO E, AN J H, et al. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae[J]. PLoS One, 2014, 9(1): e84831. |
[34] | SIRCILI M P, WALTERS M, TRABULSI L R, et al. Modulation of enteropathogenic Escherichia coli virulence by quorum sensing[J]. Infection and Immunity, 2004, 72(4): 2329-2337. |
[35] | CLARKE M B, SPERANDIO V. Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli[J]. Molecular Microbiology, 2005, 57(6): 1734-1749. |
[36] | SOUTOURINA O, KOLB A, KRIN E, et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon[J]. Journal of Bacteriology, 1999, 181(24): 7500-7508. |
[37] | LIU C, SUN D, ZHU J R, et al. The regulation of bacterial biofilm formation by cAMP-CRP: a mini-review[J]. Frontiers in Microbiology, 2020, 11: 802. |
[38] | SHI W, ZHOU Y, WILD J, et al. DnaK DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli[J]. Journal of Bacteriology, 1992, 174(19): 6256-6263. |
[39] | KAKKANAT A, PHAN M D, LO A W, et al. Novel genes associated with enhanced motility of Escherichia coli ST131[J]. PLoS One, 2017, 12(5): e0176290. |
[40] | MENG F H, YAO J, ALLEN C. A MotN mutant of Ralstonia solanacearum is hypermotile and bas reduced virulence[J]. Journal of Bacteriology, 2011, 193(10): 2477-2486. |
[41] | THOTA S S, CHUBIZ L M. Multidrug resistance regulators MarA, SoxS rob, and RamA repress flagellar gene expression and motility in Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2019, 201(23): e00385-e00319. |
[42] | LEMKE J J, DURFEE T, GOURSE R L. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade[J]. Molecular Microbiology, 2009, 74(6): 1368-1379. |
[43] | SINGER H M, ERHARDT M, HUGHES K T. RflM functions as a transcriptional repressor in the autogenous control of the Salmonella flagellar master operon flhDC[J]. Journal of Bacteriology, 2013, 195(18): 4274-4282. |
[44] | ELLERMEIER C D, SLAUCH J M. RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2003, 185(17): 5096-5108. |
[45] | MITRA A, PALANIYANDI S, HERREN C D, et al. Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073[J]. PLoS One, 2013, 8(2): e55492. |
[46] | LIN C S, TSAI Y H, CHANG C J, et al. An iron detection system determines bacterial swarming initiation and biofilm formation[J]. Scientific Reports, 2016, 6: 36747. |
[47] | SIMMS A N, MOBLEY H L T. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli[J]. Infection and Immunity, 2008, 76(11): 4833-4841. |
[48] | LEHTI T A, BAUCHART P, DOBRINDT U, et al. The fimbriae activator MatA switches off motility in Escherichia coli by repression of the flagellar master operon flhDC[J]. Microbiology, 2012, 158(Pt 6): 1444-1455. |
[49] | CLEGG S, HUGHES K T. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2002, 184(4): 1209-1213. |
[50] | WIEBE H, GÜRLEBECK D, GROß J, et al. YjjQ represses transcription of flhDC and additional loci in Escherichia coli[J]. Journal of Bacteriology, 2015, 197(16): 2713-2720. |
[51] | PEARSON M M, MOBLEY H L T. Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis[J]. Molecular Microbiology, 2008, 69(2): 548-558. |
[52] | FAN X J, ZHAO Z W, SUN T Y, et al. The LysR-type transcriptional regulator CrgA negatively regulates the flagellar master regulator flhDC in Ralstonia solanacearum GMI1000[J]. Journal of Bacteriology, 2020, 203(1): e00419-e00420. |
[53] | DONG T, YU R, SCHELLHORN H. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli[J]. Molecular Microbiology, 2011, 79(2): 375-386. |
[54] | THEODOROU M C, THEODOROU E C, KYRIAKIDIS D A. Involvement of AtoSC two-component system in Escherichia coli flagellar regulon[J]. Amino Acids, 2012, 43(2): 833-844. |
[55] | CHEN L, GU L P, GENG X F, et al. A novel cis antisense RNA AsfD promotes Salmonella enterica serovar Typhi motility and biofilm formation[J]. Microbial Pathogenesis, 2020, 142: 104044. |
[56] | RAHIMPOUR M, MONTERO M, ALMAGRO G, et al. GlgS, described previously as a glycogen synthesis control protein, negatively regulates motility and biofilm formation in Escherichia coli[J]. The Biochemical Journal, 2013, 452(3): 559-573. |
[57] | ANDREOZZI E, UHLICH G A. PchE Regulation of Escherichia coli O157: H7 flagella, controlling the transition to host cell attachment[J]. International Journal of Molecular Sciences, 2020, 21(13): 4592. |
[58] | MICHAUX C, VERNEUIL N, HARTKE A, et al. Physiological roles of small RNA molecules[J]. Microbiology, 2014, 160(Pt 6): 1007-1019. |
[59] | DE LAY N, GOTTESMAN S. RNase E finds some sRNAs stimulating[J]. Molecular Cell, 2012, 47(6): 825-826. |
[60] | THOMASON M K, FONTAINE F, DE LAY N, et al. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli[J]. Molecular Microbiology, 2012, 84(1): 17-35. |
[61] | SCHACHTERLE J K, ZENG Q, SUNDIN G W. Three Hfq-dependent small RNAs regulate flagellar motility in the fire blight pathogen Erwinia amylovora[J]. Molecular Microbiology, 2019, 111(6): 1476-1492. |
[62] | SCHACHTERLE J K, SUNDIN G W. The leucine-responsive regulatory protein lrp participates in virulence regulation downstream of small RNA ArcZ in Erwinia amylovora[J]. mbio, 2019, 10(3): e00757-e00719. |
[63] | ROMILLY C, HOEKZEMA M, HOLMQVIST E, et al. Small RNAs OmrA and OmrB promote class Ⅲ flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM[J]. RNA Biology, 2020, 17(6): 872-880. |
[64] | DE LAY N, GOTTESMAN S. A complex network of small non-coding RNAs regulate motility in Escherichia coli[J]. Molecular Microbiology, 2012, 86(3): 524-538. |
[65] | YAKHNIN A V, BAKER C S, VAKULSKAS C A, et al. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage[J]. Molecular Microbiology, 2013, 87(4): 851-866. |
[66] | YAMAMOTO S, KUTSUKAKE K. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2006, 188(18): 6703-6708. |
[67] | KIM H J, YOO W, JIN K S, et al. The role of the FliD C-terminal domain in pentamer formation and interaction with FliT[J]. Scientific Reports, 2017, 7: 4418. |
[68] | WADA T, TANABE Y, KUTSUKAKE K. FliZ acts as a repressor of the ydiV gene, which encodes an anti-FlhD4C2 factor of the flagellar regulon in Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2011, 193(19): 5191-5198. |
[69] | TAKAYA A, ERHARDT M, KARATA K, et al. YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex[J]. Molecular Microbiology, 2012, 83(6): 1268-1284. |
[70] | LI B Y, HOU C F, JU X, et al. Gain of spontaneous clpX mutations boosting motility via adaption to environments in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 772397. |
[71] | CHATTERJEE A, CUI Y Y, CHATTERJEE A K. RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC[J]. Journal of Bacteriology, 2009, 191(14): 4582-4593. |
[72] | HAMPTON H G, MCNEIL M B, PATERSON T J, et al. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia[J]. Microbiology, 2016, 162(6): 1047-1058. |
[73] | BOWDEN S D, HALE N, CHUNG J C S, et al. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing[J]. Microbiology, 2013, 159 (Pt 11): 2375-2385. |
[74] | LI B Q, YUE Y Y, YUAN Z L, et al. Salmonella STM1697 coordinates flagella biogenesis and virulence by restricting flagellar master protein FlhD4C2 from recruiting RNA polymerase[J]. Nucleic Acids Research, 2017, 45(17): 9976-9989. |
[75] | TAKAYA A, MATSUI M, TOMOYASU T, et al. The DnaK chaperone machinery converts the native FlhD2C2 hetero-tetramer into a functional transcriptional regulator of flagellar regulon expression in Salmonella[J]. Molecular Microbiology, 2006, 59(4): 1327-1340. |
[76] | MA Y, YUE Y Y, JIA H H, et al. Switching off bacterial flagellar biogenesis by YdiU-mediated UMPylation of FlhDC[J]. mBio, 2022, 13(3): e0024922. |
[77] | SILVA DIAS B H, JUNG S H, CASTRO OLIVEIRA J V, et al. C4 bacterial volatiles improve plant health[J]. Pathogens, 2021, 10(6): 682. |
[78] | CHAUDHARY T, SHUKLA P. Bioinoculants for bioremediation applications and disease resistance: innovative perspectives[J]. Indian Journal of Microbiology, 2019, 59(2): 129-136. |
[79] | SAEED M, ILYAS N, JAYACHANDRAN K, et al. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: a promising strategy for environmental remediation[J]. Environmental Pollution, 2022, 305: 119282. |
[80] | STOLL A, SALVATIERRA-MARTÍNEZ R, GONZÁLEZ M, et al. Importance of crop phenological stages for the efficient use of PGPR inoculants[J]. Scientific Reports, 2021, 11: 19548. |
[81] | IJAZ M, TAHIR M, SHAHID M, et al. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer[J]. Brazilian Journal of Microbiology, 2019, 50(2): 449-458. |
[82] | BENIDIRE L, MADLINE A, PEREIRA S I A, et al. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings[J]. Chemosphere, 2021, 262: 127803. |
[83] | VACHERON J, DESBROSSES G, BOUFFAUD M L, et al. Plant growth-promoting rhizobacteria and root system functioning[J]. Frontiers in Plant Science, 2013, 4: 356. |
[84] | BARAHONA E, NAVAZO A, GARRIDO-SANZ D, et al. Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization[J]. Frontiers in Microbiology, 2016, 7: 1471. |
[85] | VILLACIEROS M, WHELAN C, MACKOVA M, et al. Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression[J]. Applied and Environmental Microbiology, 2005, 71(5): 2687-2694. |
[86] | DE WEERT S, VERMEIREN H, MULDERS I H M, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions: MPMI, 2002, 15(11): 1173-1180. |
[87] | PAULUCCI N S, GALLARATO L A, REGUERA Y B, et al. Arachis hypogaea PGPR isolated from argentine soil modifies its lipids components in response to temperature and salinity[J]. Microbiological Research, 2015, 173: 1-9. |
[88] | THAI S N M, LUM M R, NAEGLE J, et al. Multiple copies of flhDC in Paraburkholderia unamae regulate flagellar gene expression, motility, and biofilm formation[J]. Journal of Bacteriology, 2021, 203(23): e0029321. |
[89] | TEPLITSKI M, AL-AGELY A, AHMER B M M. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar typhimurium[J]. Microbiology, 2006, 152(Pt 11): 3411-3424. |
[1] | 孟祥谦, 邹宗峰, 曲诚怀, 王双磊, 缪玉刚. 不同植物生长调节剂对苹果新梢及叶片生长的调控效果[J]. 浙江农业科学, 2023, 64(6): 1515-1518. |
[2] | 唐榕, 梁培鑫, 郭晨荔, 郭睿, 何皇成, 王腾飞, 刘建国. 盐碱胁迫对油莎豆幼苗生长和生理性状的影响[J]. 浙江农业科学, 2022, 63(3): 528-533. |
[3] | 蒋智芳, 陈梓莹, 王丽君. 酸度调节剂对杭白菊水提液抗氧化活性的影响[J]. 浙江农业科学, 2022, 63(2): 296-298. |
[4] | 庞钰洁, 俞慧明, 吴胜祥, 张海鹏, 吴剑, 李斌. 植物生长调节剂和省力化栽培技术在阳光玫瑰葡萄上的应用效果[J]. 浙江农业科学, 2021, 62(6): 1113-1115. |
[5] | 熊韬, 闫淼, 王江涛, 胡国智. 盐碱胁迫对甜瓜幼苗渗透调节物质的影响[J]. 浙江农业科学, 2021, 62(12): 2430-2434. |
[6] | 董军, 洪莉, 陈令会, 阮梦雅. 植物生长调节剂对甜樱桃坐果率的影响[J]. 浙江农业科学, 2021, 62(12): 2435-2437. |
[7] | 王晓斌, 李琪园, 沈登锋, 王世伟, 章建红. 3种哈克勒雷冬青品种与阳光狭冠冬青扦插试验比较分析[J]. 浙江农业科学, 2021, 62(11): 2243-2245. |
[8] | 张蕊蕊, 赵灵杰. 赤霉酸对芹菜的生长调节作用[J]. 浙江农业科学, 2020, 61(8): 1588-1589. |
[9] | 李朵姣, 祝泽刚, 江丽, 袁名安, 胡新荣, 郑寨生. 营养元素和植物生长调节剂对茶树果实的影响[J]. 浙江农业科学, 2019, 60(7): 1076-1077. |
[10] | 刘慧春, 李明江, 金亮, 田丹青, 朱开元, 张加强, 周江华, 谭晨. 印度梨形孢对文心兰组培苗生长的影响[J]. 浙江农业科学, 2019, 60(4): 642-645. |
[11] | 邓兆权, 林松, 饶陈, 祖庆学, 祖万斌, 程传策. 连作调理剂对贵阳植烟土壤和烤烟云烟85品质的影响[J]. 浙江农业科学, 2019, 60(4): 561-565. |
[12] | 张鹏, 杜洪艳, 唐小洁, 孙善国, 张彦兵, 王静静, 李东升. 生长调节剂对连糯2号的增产效果[J]. 浙江农业科学, 2019, 60(3): 364-366. |
[13] | 王林闯, 赵建锋, 许文钊, 罗德旭, 仲秀娟, 孙玉东. 不同生长调节剂对辣椒苗期生长的影响[J]. 浙江农业科学, 2019, 60(12): 2220-2222. |
[14] | 夏鹏云, 郭磊, 王文战, 买倩. 不同生长调节剂对核桃坐果率的影响[J]. 浙江农业科学, 2019, 60(11): 2017-2019. |
[15] | 李敏, 郑伊诺, 许凯伦, 曾国权, 陆荣茂, 胡园. 盐度胁迫对泥蚶存活率及3种酶活力的影响[J]. 浙江农业科学, 2018, 59(4): 650-653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||