浙江农业科学 ›› 2026, Vol. 67 ›› Issue (1): 26-33.DOI: 10.16178/j.issn.0528-9017.20240835

• 粮食作物 • 上一篇    下一篇

基于主成分及聚类分析的粳稻品质综合评价

吕靖芳1(), 孙秋敏2, 戴芬2, 朱作艺2,*()   

  1. 1.绍兴市上虞区农产品质量安全检测中心,浙江 绍兴 312300
    2.浙江省农业科学院 农产品质量安全与营养研究所,浙江 杭州 310021
  • 收稿日期:2024-11-25 出版日期:2026-01-11 发布日期:2026-01-19
  • 通讯作者: 朱作艺
  • 作者简介:朱作艺,E-mail:zhuzuoyi2008@126.com
    吕靖芳,研究方向为农产品质量安全。E-mail:371830447@qq.com
  • 基金资助:
    浙江省农业科学院地方科技合作项目(SY202309)

Comprehensive quality evaluation of japonica rice based on principal component and cluster analysis

LYU Jingfang1(), SUN Qiumin2, DAI Fen2, ZHU Zuoyi2,*()   

  1. 1. Shangyu District Agricultural Products Quality and Safety Testing Center of Shaoxing City, Shaoxing 312300, Zhejiang
    2. Institute of Agricultural Product Quality and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang
  • Received:2024-11-25 Online:2026-01-11 Published:2026-01-19
  • Contact: ZHU Zuoyi

摘要:

随着现代农业的快速发展,对优质稻米的生产与消费需求日益增长,已成为当前水稻产业发展的迫切要求。本研究采用主成分分析法对31个浙江上虞地区粳稻品种的12项稻米品质指标进行综合评价,并利用聚类分析对其进行系统归类。结果表明,上虞地区不同粳稻品种的各项品质指标均存在较大差异,且各指标间表现出不同程度的相关性。其中,垩白度和垩白粒率的变异系数在所有品质指标中最大,直链淀粉含量与垩白粒率呈极显著正相关。主成分分析提取的4个主成分分别反映了外观品质、加工品质、营养品质和食味品质,为全面评估不同水稻品种的品质提供了有效依据。综合分析显示,南粳46、秀水1717和嘉67在多个品质指标上表现优异,综合排名位列前三。此外,聚类分析将31个品种划分为3个类群,12个指标聚为3个类群,品种聚类与品质指标聚类之间具有显著关联性。本研究为水稻质量评估、系统评价与科学分类提供了可靠的技术基础。

关键词: 水稻, 品质评价, 主成分分析, 聚类分析

Abstract:

With the rapid development of modern agriculture, the demand for high-quality rice production and consumption has been increasingly growing, becoming an urgent requirement for the current rice industry development. This study employed principal component analysis (PCA) to comprehensively evaluate 12 quality indicators of 31 japonica rice varieties from Shangyu region of Zhejiang Province, and utilized cluster analysis for systematic classification. The results showed that there were significant differences in various quality indicators among different japonica rice varieties in Shangyu, with varying degrees of correlation observed between indicators. Among them, the coefficients of variation for chalkiness degree and chalky grain rate were the highest across all quality indicators, and amylose content showed a highly significant positive correlation with chalky grain rate. The four principal components extracted by PCA reflected appearance quality, processing quality, nutritional quality, and eating/cooking quality, respectively, providing an effective basis for comprehensively evaluating the quality of different rice varieties. Comprehensive analysis revealed that Nangeng 46, Xiushui 1717, and Jia 67 performed excellently in multiple quality indicators, ranking in the top three overall. Furthermore, cluster analysis divided the 31 varieties into three groups and the 12 indicators into three groups, with significant correlations observed between variety clustering and quality indicator clustering. This study establishes a reliable technical foundation for rice quality assessment, systematic evaluation, and scientific classification.

Key words: rice, quality evaluation, principal component analysis (PCA), cluster analysis

中图分类号: