ZHEJIANG NONGYE KEXUE ›› 2018, Vol. 59 ›› Issue (12): 2161-2166.DOI: 10.16178/j.issn.0528-9017.20181201
• Orginal Article • Previous Articles Next Articles
Received:
2018-09-30
Online:
2018-12-11
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20181201
[1] 李秀花, 姚洪渭, 叶恭银. 二化螟盘绒茧蜂寄生对寄主二化螟幼虫免疫反应的影响[J]. 植物保护学报, 2011, 38(4):313⁃319.
[2] YAO R, ZHAO D D, ZHANG S, et al. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides[J]. Pest Management Science, 2017, 73(6): 1169⁃1178.
[3] DONG X T, LIAO H, ZHU G H, et al. CRISPR/Cas9‐mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological response to sex pheromones in male Chilo suppressalis[J]. Insect Science, 2017: doi:10.1111/1744⁃7917.12544.
[4] YIN C, LIU Y, LIU J, et al. ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis[J]. Database, 2014(15): 92⁃108.
[5] 侯丽, 詹帅, 周欣,等. 中国昆虫基因组学的研究进展[J]. 应用昆虫学报, 2017, 54(5):693⁃704.
[6] MA W, ZHANG Z, PENG C, et al. Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker)[J]. PloS One, 2012, 7(5): e38151.
[7] WU S F, SUN F D, QI Y X, et al. Parasitization by Cotesia chilonis influences gene expression in fatbody and hemocytes of Chilo suppressalis[J]. PLoS One, 2013, 8(9): e74309.
[8] CAO D P, LIU Y, WEI J J, et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis[J]. International Journal of Biological Sciences, 2014, 10(8): 846⁃860.
[9] XU G, WU S F, WU Y S, et al. De novo assembly and characterization of central nervous system transcriptome reveals neurotransmitter signaling systems in the rice striped stem borer, Chilo suppressalis[J]. BMC Genomics, 2015, 16(1): 525.
[10] XIA Y H, ZHANG Y N, HOU X Q, et al. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor⁃pheromone glands of Chilo suppressalis[J]. Scientific Reports, 2015, 5: 7888.
[11] LU Y H, ZHAO Y Y, LU H, et al. Midgut transcriptional variation of Chilo suppressalis larvae induced by feeding on the dead⁃end trap plant, Vetiveria zizanioides [J]. Frontiers in Physiology, 2018, 9: 1067.
[12] GE Z Y, WAN P J, HAN Z J. Cloning and characterization of trypsin⁃and chymotrypsin⁃like genes in the striped rice stem borer, Chilo suppressalis [J]. Genome, 2012, 55(4): 281⁃288.
[13] GE Z Y, WAN P J, CHENG X F, et al. Cloning and characterization of serpin⁃like genes from the striped rice stem borer, Chilo suppressalis [J]. Genome, 2013, 56(6): 359⁃366.
[14] GE Z Y, WAN P J, LI G Q, et al. Characterization of cysteine protease⁃like genes in the striped rice stem borer, Chilo suppressalis [J]. Genome, 2014, 57(2): 79⁃88.
[15] WANG B J, SHAHZAD M F, ZHANG Z, et al. Genome⁃wide analysis reveals the expansion of cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis [J]. Biochemical and Biophysical Research Communications, 2014, 443(2): 756⁃760.
[16] SU C C, TU G M, HUANG S J, et al. Genome⁃wide analysis of chitinase genes and their varied functions in larval moult, pupation and eclosion in the rice striped stem borer, Chilo suppressalis[J]. Insect Molecular Biology, 2016, 25(4): 401⁃412.
[17] ZHAO X X, SITU G M, HE K, et al. Function analysis of eight chitinase genes in rice stem borer and their potential application in pest control[J]. Insect Molecular Biology, 2018: doi: 10.1111/imb.12525.
[18] GAO C F, YAO R, ZHANG Z Z, et al. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2013, 106(5): 2190⁃2194.
[19] SU J Y, ZHANG Z Z, WU M, et al. Geographic susceptibility of Chilo suppressalis Walker (Lepidoptera: Crambidae), to chlorantraniliprole in China [J]. Pest Management Science, 2014, 70(6): 989⁃995.
[20] WU M, ZHANG S, YAO R, et al. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China[J]. Journal of Economic Entomology, 2014, 107(3): 1250⁃1255.
[21] 赵丹丹, 周丽琪, 张帅, 等. 二化螟对双酰胺类杀虫剂的抗药性监测和交互抗性研究 [J]. 中国水稻科学, 2017, 31(3): 307⁃314.
[22] LIU Y L, SHAHZAD M F, ZHANG L, et al. Amplifying long transcripts of ryanodine receptors of five agricultural pests by transcriptome analysis and gap filling [J]. Genome, 2013, 56(11): 651⁃658.
[23] PENG Y C, SHENG C W, CASIDA J E, et al. Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: molecular cloning, alternative splicing and expression profiling [J]. Pesticide Biochemistry and Physiology, 2017, 135: 69⁃77.
[24] GUO L, WANG Y, ZHOU X G, et al. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole[J]. Pest Management Science, 2014, 70(7): 1083⁃1089.
[25] LU Y H, WANG G R, ZHONG L Q, et al. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China[J]. Crop Protection, 2017, 100: 196⁃202.
[26] SUN Y, XU L, CHEN Q, et al. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker)[J]. Pest Management Science, 2018, 74(6): 1416⁃1423.
[27] XU L, ZHAO J, SUN Y, et al. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker)[J]. Pest Management Science, 2018: doi: 10.1002/ps.5171.
[28] HUANG L, LU M X, HAN G J, et al. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (CsVg) expression in the rice stem borer, Chilo suppressalis[J]. Pest Management Science, 2016, 72(12): 2280⁃2286.
[29] XU B B, QIAN K, ZHANG N, et al. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis[J]. Pest Management Science, 2017, 73(10): 2111⁃2117.
[30] WANG X Y, DU L X, LIU C X, et al. RNAi in the striped stem borer, Chilo suppressalis, establishes a functional role for aminopeptidase N in Cry1Ab intoxication[J]. Journal of Invertebrate Pathology, 2017, 143: 1⁃10.
[31] QIU L, FAN J X, ZHANG B Y, et al. RNA interference knockdown of aminopeptidase N genes decrease the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca⁃expressing transgenic rice[J]. Journal of Invertebrate Pathology, 2017, 145: 9⁃12.
[32] ZHANG H, DU B, YANG Y, et al. Cadherin mutation linked to resistance to Cry1Ac affects male paternity and sperm competition in Helicoverpa armigera [J]. Journal of Insect Physiology, 2014, 70: 67⁃72.
[33] ZHANG Z, TENG X L, MA W H, et al. Knockdown of two Cadherin genes confers resistance to Cry2A and Cry1C in Chilo suppressalis [J]. Scientific Reports, 2017, 7(1): 5992.
[34] NING C M, WU K M, LIU C X, et al. Characterization of a Cry1Ac toxin⁃binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hubner) larvae[J]. Journal of Insect Physiology, 2010, 56(6): 666⁃672.
[35] QIU L, WANG P, WU T, et al. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines[J]. Insect Molecular Biology, 2018, 27(1): 83⁃89.
[36] CANCINO⁃RODEZNO A, ALEXANDER C, VILLASENOR R, et al. The mitogen⁃activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis[J]. Insect Biochemistry and Molecular Biology, 2010, 40(1): 58⁃63.
[37] QIU L, FAN J X, LIU L, et al. Knockdown of the MAPK p38 pathway increases the susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis Cry1Ca toxin[J]. Scientific Reports, 2017, 7: 43964.
[38] HUANG J, WU SF, LI X H, et al. The characterization of a concentration⁃sensitive α⁃adrenergic⁃like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function[J]. Brain, Behavior and Immunity, 2012, 26(6): 942⁃950.
[39] WU S F, YAO Y, HUANG J, et al. Characterization of a β⁃adrenergic⁃like octopamine receptor from the rice stem borer (Chilo suppressalis)[J]. Journal of Experimental Biology, 2012, 215(15): 2646⁃2652.
[40] WU S F, XU G, QI Y X, et al. Two splicing variants of a novel family of octopamine receptors with different signaling properties[J]. Journal of Neurochemistry, 2014, 129(1): 37⁃47.
[41] WU S F, HUANG J, YE G Y. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker)[J]. Pest Management Science, 2013, 69(1): 126⁃134.
[42] WU S F, XU G, YE G Y. Characterization of a tyramine receptor type 2 from hemocytes of rice stem borer, Chilo suppressalis[J]. Journal of Insect Physiology, 2015, 75: 39⁃46.
[43] XU G, WU S F, GU G X, et al. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis[J]. Insect Biochemistry and Molecular Biology, 2017, 83: 80⁃93.
[44] AHERN G P. 5⁃HT and the immune system[J]. Current Opinion in Pharmacology, 2011, 11(1): 29⁃33.
[45] SARKAR C, BASU B, CHAKROBORTY D, et al. The immunoregulatory role of dopamine: an update[J]. Brain, Behavior and Immunity, 2010, 24(4): 525⁃528.
[46] WU S F, XU G, STANLEY D, et al. Dopamine modulates hemocyte phagocytosis via a D1⁃like receptor in the rice stem borer, Chilo suppressalis[J]. Scientific Reports, 2015, 5: 12247.
[47] XU G, WU S F, TENG Z W, et al. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae)[J]. Insect Science, 2017, 24(3): 371⁃384.
[48] SHENG C W, JIA Z Q, OZOE Y, et al. Molecular cloning, spatiotemporal and functional expression of GABA receptor subunits RDL1 and RDL2 of the rice stem borer Chilo suppressalis[J]. Insect Biochemistry and Molecular Biology, 2018, 94: 18⁃27.
[49] XU G, GU G X, TENG Z W, et al. Identification and expression profiles of neuropeptides and their G protein⁃coupled receptors in the rice stem borer Chilo suppressalis[J]. Scientific Reports, 2016, 6: 28976.
[50] YANG K, LIU Y, NIU D J, et al. Identification of novel odorant binding protein genes and functional characterization of OBP8 in Chilo suppressalis (Walker)[J]. Gene, 2016, 591(2): 425⁃432.
[51] KHUHRO S A, LIAO H, DONG X T, et al. Two general odorant binding proteins display high bindings to both host plant volatiles and sex pheromones in a pyralid moth Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Journal of Asia⁃Pacific Entomology, 2017, 20(2): 521⁃528.
[52] CHANG H T, LIU Y, YANG T, et al. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis[J]. Scientific Reports, 2015, 5: 13093.
[53] HUNTZINGER E, IZAURRALDE E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nature Reviews Genetics, 2011, 12(2): 99⁃110.
[54] HE K, SUN Y, XIAO H M, et al. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis[J]. RNA, 2017, 23(12): 1817⁃1833.
[55] JIANG S, WU H, LIU H J, et al. The overexpression of insect endogenous small RNAs in transgenic rice inhibits growth and delays pupation of striped stem borer (Chilo suppressalis)[J]. Pest Management Science, 2017, 73(7): 1453⁃1461.
[56] HE K, XIAO H M, SUN Y, et al. Transgenic microRNA⁃14 rice shows high resistance to rice stem borer[J]. Plant Biotechnology Journal, 2018: doi: 10.1111/pbi.12990.
[57] KING A M, MACRAE T H. Insect heat shock proteins during stress and diapause[J]. Annual Review of Entomology, 2015, 60: 59⁃75.
[58] SONODA S, FUKUMOTO K, IZUMI Y, et al. Cloning of heat shock protein genes (hsp90 and hsc70) and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker[J]. Archives of Insect Biochemistry and Physiology, 2006, 63(1): 36⁃47.
[59] QIANG C K, DU Y Z, YU L Y, et al. Cloning and expression of heat shock protein 90 gene from the diapausing larvae of the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae) exposed to temperature stress[J]. Research Journal of Biotechnology, 2010, 5(4): 68⁃75.
[60] 崔亚东, 陆明星, 杜予州. 二化螟热休克蛋白70基因的克隆及热胁迫下的表达分析[J]. 昆虫学报, 2010, 53(8): 841⁃848.
[61] CUI Y D, DU Y Z, LU M X, et al. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress[J]. Journal of Insect Science, 2010, 10(1): 100.
[62] LU M X, LIU Z X, CUI Y D, et al. Expression patterns of three heat shock proteins in Chilo suppressalis (Lepidoptera: Pyralidae)[J]. Annals of the Entomological Society of America, 2014, 107(3): 667⁃673.
[63] LU M X, HUA J, CUI Y D, et al. Five small heat shock protein genes from Chilo suppressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles[J]. Cell Stress & Chaperones, 2014, 19(1): 91⁃104.
[64] PAN D D, LU M X, LI Q Y, et al. Characteristics and expression of genes encoding two small heat shock protein genes lacking introns from Chilo suppressalis[J]. Cell Stress & Chaperones, 2018, 23(1): 55⁃64.
[65] 滕子文, 吴顺凡, 李秀花, 等. 二化螟盘绒茧蜂的室内种群饲养和保种 [J]. 浙江农业科学, 2016, 57(12): 2074⁃2077.
[66] TENG Z W, XU G, GAN S Y, et al. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae[J]. Journal of Insect Physiology, 2016, 85: 46⁃56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||