Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (6): 1468-1475.DOI: 10.16178/j.issn.0528-9017.20230648
Previous Articles Next Articles
ZHOU Huan1,2,3(), ZHENG Xiaojie1,2,3, ZOU Ying1,2,3,*(
), LI Yanpo1,2,3, YE Jian1,2,3, HU Chaofan1,2,3, ZHANG Zhicheng4
Received:
2023-06-14
Online:
2024-06-11
Published:
2024-06-20
CLC Number:
ZHOU Huan, ZHENG Xiaojie, ZOU Ying, LI Yanpo, YE Jian, HU Chaofan, ZHANG Zhicheng. Research progress on the application of nanomaterials in electrochemical detection of nitrite[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(6): 1468-1475.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230648
Fig.2 Schematic diagram of NrGO modified glassy carbon electrode preparation[15] and N-CNFs@N-GRQDs Preparation process of nitrite voltammetric sensor[17]
电极材料 | 线性范围/(μmol·L-1) | 检出限 | 检测样品 | 参考文献 |
---|---|---|---|---|
ERGO/AuNPs/SPCE | 1~6 000 | 0.13 μmol·L-1 | 矿泉水、虾干、腌/咸鱼和香肠 | [ |
Ag-rGO | 0.1~120 | 12 nmol·L-1 | 池塘水 | [ |
f-MWCNT/PdNPs | 0.05~2 887.6 | 22 nmol·L-1 | 自来水、池塘水、饮用水 | [ |
Au-Pt NPs/PyTS-NG | 0.5~1 621 | 0.19 mmol·L-1 | 火腿肠和自来水 | [ |
MWCNTs@Au-Pd/GR | 0.02~55.0 | 9.44 nmol·L-1 | 香肠、奶酪、植物食品、土壤、矿泉水、自来水 | [ |
Ag/Cu/MWNTs | 1.0~1.0×103 | 0.02 μmol·L-1 | 湖水、饮用水、海水 | [ |
Au-Pd/rGO | 0.05~1.0×103 | 0.02 μmol·L-1 | 自来水 | [ |
CoNi/GR | 0.1~30、30~330 | 0.05 mmol·L-1 | 矿泉水、香肠、干酪 | [ |
Table 1 Comparison of results for determining nitrite in actual samples with different metal composite material modified electrodes
电极材料 | 线性范围/(μmol·L-1) | 检出限 | 检测样品 | 参考文献 |
---|---|---|---|---|
ERGO/AuNPs/SPCE | 1~6 000 | 0.13 μmol·L-1 | 矿泉水、虾干、腌/咸鱼和香肠 | [ |
Ag-rGO | 0.1~120 | 12 nmol·L-1 | 池塘水 | [ |
f-MWCNT/PdNPs | 0.05~2 887.6 | 22 nmol·L-1 | 自来水、池塘水、饮用水 | [ |
Au-Pt NPs/PyTS-NG | 0.5~1 621 | 0.19 mmol·L-1 | 火腿肠和自来水 | [ |
MWCNTs@Au-Pd/GR | 0.02~55.0 | 9.44 nmol·L-1 | 香肠、奶酪、植物食品、土壤、矿泉水、自来水 | [ |
Ag/Cu/MWNTs | 1.0~1.0×103 | 0.02 μmol·L-1 | 湖水、饮用水、海水 | [ |
Au-Pd/rGO | 0.05~1.0×103 | 0.02 μmol·L-1 | 自来水 | [ |
CoNi/GR | 0.1~30、30~330 | 0.05 mmol·L-1 | 矿泉水、香肠、干酪 | [ |
[1] | ZHAO K, SONG H Y, ZHUANG S Q, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes[J]. Electrochemistry Communications, 2007, 9(1): 65-70. |
[2] | NAKAMURA K, YOSHIDA Y, MIKAMI I, et al. Selective hydrogenation of nitrate in water over Cu-Pd/mordenite[J]. Applied Catalysis B: Environmental, 2006, 65(1/2): 31-36. |
[3] | JAKSZYN P, GONZALEZ C A. Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence[J]. World Journal of Gastroenterology, 2006, 12(27): 4296-4303. |
[4] | SALIMI A, KURD M, TEYMOURIAN H, et al. Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis[J]. Sensors and Actuators B: Chemical, 2014, 205: 136-142. |
[5] | HILSHEIMER R, HARWIG J. Colorimetric determination of nitrite from meat and other foods: an alternative colour reagent for the carcinogenic 1-naphthylamine and an improved extraction method[J]. Canadian Institute of Food Science and Technology Journal, 1976, 9(4): 225-227. |
[6] | GARCÍA-ROBLEDO E, CORZO A, PAPASPYROU S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes[J]. Marine Chemistry, 2014, 162:30-36. |
[7] | SALHI E, VON GUNTEN U. Simultaneous determination of bromide, bromate and nitrite in low μg·l-1 levels by ion chromatography without sample pretreatment[J]. Water Research, 1999, 33(15): 3239-3244. |
[8] | JEDLIČKOVÁ V, PALUCH Z, ALUŠÍK Š. Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma[J]. Journal of Chromatography B, 2002, 780(1): 193-197. |
[9] | SMYTHE G A, MATANOVIC G. Specific analysis of nitrate and nitrite by gas chromatography/mass spectrometry[J]. Methods in Enzymology, 2002, 359:148-157. |
[10] | NOROOZIFAR M, KHORASANI-MOTLAGH M, TAHERI A, et al. Application of manganese(Ⅳ) dioxide microcolumn for determination and speciation of nitrite and nitrate using a flow injection analysis-flame atomic absorption spectrometry system[J]. Talanta, 2007, 71(1): 359-364. |
[11] | KOZUB B R, REES N V, COMPTON R G. Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?[J]. Sensors and Actuators B: Chemical, 2010, 143(2): 539-546. |
[12] | YANG M, YAN Y J, SHI H X, et al. A novel fluorescent sensors for sensitive detection of nitrite ions[J]. Materials Chemistry and Physics, 2020, 239:122121. |
[13] | ZHENG P, KASANI S, SHI X F, et al. Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array[J]. Analytica Chimica Acta, 2018, 1040: 158-165. |
[14] | LI S F, QU J Y, WANG Y, et al. A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide[J]. Analytical Methods, 2016, 8(21): 4204-4210. |
[15] | CHEN D, JIANG J J, DU X Z. Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection[J]. Talanta, 2016, 155:329-335. |
[16] | MEHMETI E, STANKOVIĆ D M, HAJRIZI A, et al. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination[J]. Talanta, 2016, 159: 34-39. |
[17] | LI L B, LIU D, WANG K, et al. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor[J]. Sensors and Actuators B: Chemical, 2017, 252: 17-23. |
[18] | DING B J, WANG H, TAO S Y, et al. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water[J]. RSC Advances, 2016, 6(9): 7302-7309. |
[19] | ZHOU S H, WU H M, WU Y, et al. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems[J]. Thin Solid Films, 2014, 564:406-411. |
[20] | MIAO P, SHEN M, NING L M, et al. Functionalization of platinum nanoparticles for electrochemical detection of nitrite[J]. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2407-2411. |
[21] | MANIKANDAN V S, LIU Z G, CHEN A C. Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode[J]. Journal of Electroanalytical Chemistry, 2018, 819: 524-532. |
[22] | GUPTA S, PRAKASH R. Photochemical assisted formation of silver nano dendrites and their application in amperometric sensing of nitrite[J]. RSC Advances, 2014, 4(15): 7521-7527. |
[23] | CHEN S S, SHI Y C, WANG A J, et al. Free-standing Pt nanowire networks with clean surfaces: highly sensitive electrochemical detection of nitrite[J]. Journal of Electroanalytical Chemistry, 2017, 791: 131-137. |
[24] | YANG J H, YANG H T, LIU S H, et al. Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite[J]. Sensors and Actuators B: Chemical, 2015, 220: 652-658. |
[25] | MANOJ D, SARAVANAN R, SANTHANALAKSHMI J, et al. Towards green synthesis of monodisperse Cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor[J]. Sensors and Actuators B: Chemical, 2018, 266: 873-882. |
[26] | ZHANG S, TANG Y P, CHEN Y Y, et al. Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing[J]. Journal of Electroanalytical Chemistry, 2019, 839: 195-201. |
[27] | JIAN J M, FU L F, JI J Y, et al. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods[J]. Sensors and Actuators B: Chemical, 2018, 262:125-136. |
[28] | AHMAD R, MAHMOUDI T, AHN M S, et al. Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite[J]. Journal of Colloid and Interface Science, 2018, 516: 67-75. |
[29] | THIRUMALRAJ B, PALANISAMY S, CHEN S M, et al. Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes[J]. Journal of Colloid and Interface Science, 2016, 478: 413-420. |
[30] | LI Z, AN Z Z, GUO Y Y, et al. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite[J]. Talanta, 2016, 161: 713-720. |
[31] | YANG Y, ZHANG J, LI Y W, et al. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126865. |
[32] | REZAEI M. An Au-Pd@MWCNT/graphene modified carbon paste electrode as a novel nano-composite sensor for the trace determination of nitrite[J]. Analytical and Bioanalytical Electrochemistry, 2016, 8(3): 287-303. |
[33] | ZHANG Y, NIE J T, WEI H Y, et al. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2018, 258: 1107-1116. |
[34] | LI S S, HU Y Y, WANG A J, et al. Simple synthesis of worm-like Au-Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite[J]. Sensors and Actuators B: Chemical, 2015, 208: 468-474. |
[35] | GHOLIVAND M B, JALALVAND A R, GOICOECHEA H C. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles[J]. Materials Science and Engineering: C, 2014, 40: 109-120. |
[36] | LI D, KANER R B. Shape and aggregation control of nanoparticles: not Shaken, not stirred[J]. Journal of the American Chemical Society, 2006, 128(3): 968-975. |
[37] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. |
[38] | KASSAEE M Z, MOTAMEDI E, MAJDI M. Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite[J]. Chemical Engineering Journal, 2011, 172(1): 540-549. |
[39] | SUDHA V, MOHANTY S A, THANGAMUTHU R. Facile e synthesis of Co3O4 disordered circular sheets for selective electrochemical determination of nitrite[J]. New Journal of Chemistry, 2018, 42(14): 11869-11877. |
[40] | MA Y, SONG X Y, GE X, et al. In situ growth of α-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite[J]. Journal of Materials Chemistry A, 2017, 5(9): 4726-4736. |
[41] | WANG R, WANG Z, XIANG X J, et al. MnO2 nanoarrays: an efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications[J]. Chemical Communications, 2018, 54(73): 10340-10342. |
[42] | ZHE T T, LI M Y, LI F, et al. Integrating electrochemical sensor based on MoO3/Co3O4 heterostructure for highly sensitive sensing of nitrite in sausages and water[J]. Food Chemistry, 2022, 367: 130666. |
[43] | LI Y, CHENG C, YANG Y P, et al. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite[J]. Journal of Alloys and Compounds, 2019, 798: 764-772. |
[44] | COSNIER S, HOLZINGER M. Electrosynthesized polymers for biosensing[J]. Chemical Society Reviews, 2011, 40(5): 2146-2156. |
[45] | CHENG Y H, KUNG C W, CHOU L Y, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing[J]. Sensors and Actuators B: Chemical, 2014, 192: 762-768. |
[46] | XU F G, LIU Y, DING G H, et al. Three dimensional macroporous poly(3,4-ethylenedioxythiophene) structure: Electrodeposited preparation and sensor application[J]. Electrochimica Acta, 2014, 150: 223-231. |
[47] | TIAN F Y, LI H J, LI M J, et al. Synthesis of one-dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone,catechol, resorcinol, and nitrite[J]. Synthetic Metals, 2017, 226: 148-156. |
[48] | SUMA B P, ADARAKATTI P S, KEMPAHANUMAKKAGARI S K, et al. A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples[J]. Materials Chemistry and Physics, 2019, 229: 269-278. |
[1] | ZHU Chuanshuai, MA Cunfa, WU Ting, ZHAO Hui. Research progress in breeding broccoli for resistance to black rot [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1005-1011. |
[2] | SHI Xu, GAO Song, LIU Shuai, MA Shiquan, HUANG Kun, PAN Yuanhong, GUO Jian, SONG Wenfeng, ZHANG Tiehuai, GUAN Qunrong, XIAO Changdong, WU Jinhui, LONG Baoan, PU Enping, SHI Xiaohui, WU Si. Research on the development of smart tobacco agriculture based on artificial intelligence technology [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(4): 942-948. |
[3] | LIU Chunxiao, JIANG Xianda, LI Hui, KAN Jialiang, WANG Zhonghua, LI Xiaogang. Research progress on promoting sprouting and branching of pear [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(1): 117-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||