Journal of Zhejiang Agricultural Sciences ›› 2024, Vol. 65 ›› Issue (5): 1005-1011.DOI: 10.16178/j.issn.0528-9017.20230981
Previous Articles Next Articles
ZHU Chuanshuai(), MA Cunfa, WU Ting, ZHAO Hui(
)
Received:
2023-10-07
Online:
2024-05-11
Published:
2024-05-23
CLC Number:
ZHU Chuanshuai, MA Cunfa, WU Ting, ZHAO Hui. Research progress in breeding broccoli for resistance to black rot[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1005-1011.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnykx.cn/EN/10.16178/j.issn.0528-9017.20230981
鉴别寄主 | 生理小种鉴定结果 | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Wirosa F1(B.oleracea) | + | + | + | + | + | + |
Just Right Hybrid Turnip (B.rapa),Line 14R of Cobra (B.napus) | + | + | + | - | + | + |
Seven Top Turnip (B.rapa) | + | - | + | - | + | + |
PI 199947 (B.carinata) | - | + | - | - | + | + |
Florida Broad Leaf Mustard (B.juncea) | - | + | - | - | (+) | + |
Miracle F1 (B.oleracea) | + | - | - | + | - | + |
Table 1 Classification criteria for physiological races of black rot disease
鉴别寄主 | 生理小种鉴定结果 | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Wirosa F1(B.oleracea) | + | + | + | + | + | + |
Just Right Hybrid Turnip (B.rapa),Line 14R of Cobra (B.napus) | + | + | + | - | + | + |
Seven Top Turnip (B.rapa) | + | - | + | - | + | + |
PI 199947 (B.carinata) | - | + | - | - | + | + |
Florida Broad Leaf Mustard (B.juncea) | - | + | - | - | (+) | + |
Miracle F1 (B.oleracea) | + | - | - | + | - | + |
作者 | 年份 | 材料数量/份 | 材料种类 | 抗性种质 |
---|---|---|---|---|
简元才等[ | 1993 | 34 | 青花菜 | 9214、9225 |
刘玉梅等[ | 1996 | 80 | 青花菜 | 8551、8549 |
Tonguç等[ | 2004 | 65 | 甘蓝 | PI199947、PI199949、PI194256 |
杨竹莹[ | 2007 | 96 | 青花菜 | J9806、J9914 |
姚星伟等[ | 2018 | 45 | 花椰菜 | NB-59、NB-119 |
Table 2 Germplasm resources of broccoli and related species resistant to black rot disease
作者 | 年份 | 材料数量/份 | 材料种类 | 抗性种质 |
---|---|---|---|---|
简元才等[ | 1993 | 34 | 青花菜 | 9214、9225 |
刘玉梅等[ | 1996 | 80 | 青花菜 | 8551、8549 |
Tonguç等[ | 2004 | 65 | 甘蓝 | PI199947、PI199949、PI194256 |
杨竹莹[ | 2007 | 96 | 青花菜 | J9806、J9914 |
姚星伟等[ | 2018 | 45 | 花椰菜 | NB-59、NB-119 |
参考文献 | 实验材料 | 研究方法 | 研究结论 |
---|---|---|---|
吴晓丽等[ | 花椰菜 | 通过剪叶法接种抗、感黑腐病材料,检测活性氧、超氧化物歧化酶、过氧化物酶、膜脂过氧化产物含量 | 接种黑腐病后,抗病品种的活性氧产生速率、超氧化物歧化酶、过氧化物酶活性高于感病品种,而膜脂过氧化产物含量和电导率的增幅要明显低于感病品种,干物质积累速度下降幅度低于感病品种 |
江汉民等[ | 花椰菜 | 以花椰菜抗黑腐病近等基因型C712(抗病系)和C731(感病系)为材料,利用抑制性消减杂交技术构建了一个C712受黑腐病菌诱导表达的正向消减cDNA文库,挑取阳性克隆进行测序,再比对同源蛋白序列 | 202条表达序列标签(EST)中参与物质及能量代谢相关的基因最多占16%和15%,涉及抗病与防御相关的序列占13%,加工和储藏的序列占7%,这些基因的表达与生长发育及抗病性密切相关 |
Ribeiro等[ | 甘蓝 | 对感、抗黑腐病材料进行接种,检测相关蛋白变化 | 感病材料的光合作用相关蛋白较抗病材料显著减少,光合作用的调节对于Xcc的抗性反应至关重要 |
姚玉荣等[ | 花椰菜 | 抗、感黑腐病花椰菜品种接种黑腐病致病菌5 d后进行高通量测序,利用RNA-Seq技术分析数据 | 花椰菜抗、感病品种间共有差异表达基因3 195个,其中上调表达基因1 424个,下调表达基因1 771个 |
Table 3 Research progress on the mechanism of resistance to black rot in broccoli and related vegetables
参考文献 | 实验材料 | 研究方法 | 研究结论 |
---|---|---|---|
吴晓丽等[ | 花椰菜 | 通过剪叶法接种抗、感黑腐病材料,检测活性氧、超氧化物歧化酶、过氧化物酶、膜脂过氧化产物含量 | 接种黑腐病后,抗病品种的活性氧产生速率、超氧化物歧化酶、过氧化物酶活性高于感病品种,而膜脂过氧化产物含量和电导率的增幅要明显低于感病品种,干物质积累速度下降幅度低于感病品种 |
江汉民等[ | 花椰菜 | 以花椰菜抗黑腐病近等基因型C712(抗病系)和C731(感病系)为材料,利用抑制性消减杂交技术构建了一个C712受黑腐病菌诱导表达的正向消减cDNA文库,挑取阳性克隆进行测序,再比对同源蛋白序列 | 202条表达序列标签(EST)中参与物质及能量代谢相关的基因最多占16%和15%,涉及抗病与防御相关的序列占13%,加工和储藏的序列占7%,这些基因的表达与生长发育及抗病性密切相关 |
Ribeiro等[ | 甘蓝 | 对感、抗黑腐病材料进行接种,检测相关蛋白变化 | 感病材料的光合作用相关蛋白较抗病材料显著减少,光合作用的调节对于Xcc的抗性反应至关重要 |
姚玉荣等[ | 花椰菜 | 抗、感黑腐病花椰菜品种接种黑腐病致病菌5 d后进行高通量测序,利用RNA-Seq技术分析数据 | 花椰菜抗、感病品种间共有差异表达基因3 195个,其中上调表达基因1 424个,下调表达基因1 771个 |
参考文献 | 实验材料 | 研究方法 | 研究结论/成果 |
---|---|---|---|
古瑜等[ | 花椰菜 | 用一对近等基因系的花椰菜C712(抗病系)和C731(感病系)品系及抗病基因供体C5,通过剪叶法接种病菌鉴定,利用cDNA-AFLP技术,研究了花椰菜黑腐病抗性在黑腐病菌侵染和非侵染条件下基因表达的情况 | 推测M6cDNA片段可能就是编码花椰菜中类2A6蛋白的部分基因片段,是参与花椰菜抗病反应信号途径的相关调控基因片段 |
Soengas等[ | 白菜 | 利用甘蓝型油菜感病自交系R-o-18与B162杂交获得的114株F2群体的223条AFLP带,构建了甘蓝型油菜10个连锁群(A01~A10)的连锁图谱,图谱总距离为664 cM | 发现对1号和4号小种的抗性显著QTL聚集在A06上。在A06上,对1号和4号生理小种的抗性QTL的一致区间不重叠,表明对各生理小种的抗性是由不同但紧密连锁的QTL决定的 |
Doullah等[ | 甘蓝 | 用感病材料:Green Commet(GC)P09作为母本和抗性DH系ReihoP01做杂交,获得F1群体,通过自交得到F2、F3群体;提取亲本和94个F2个体的DNA,做多态性检测;对F3群体通过剪叶法做抗性鉴定 | 构建包含35对CAPS标记和57对SRAP标记的青花菜遗传连锁图谱,共10个连锁群,覆盖320.5 cM,平均遗传图距为3.56 cM,检测到2个与抗黑腐病相关的显著性QTL,分别是位于LG2上的CAM 1-GSA 1和位于LG9上的F12-R12 e-BORED |
Kifuji等[ | 甘蓝 | 分别在2009年10月(09Au)和2010年10月(10Au)使用140和142株F2植物进行接种测试。并进行多态性分析,构建连锁图谱。 | 构建了一个由9个连锁群组成的连锁图,共有209个标记,定位到3个与抗性相关的QTL,QTL-1、QTL-2和QTL-3分别位于连锁群C2、C4和C5上。QTL-1的LOD值最高,加性效应最强,为主效基因 |
Lee等[ | 甘蓝 | 通过对2个甘蓝亲本系全基因组重测序及SNP检测,以及3 a内对F2和F3代植株3次独立接种鉴定 | 构建出由368个标记组成,覆盖1 467.3 cM,相邻标记之间的平均间隔为3.88 cM的遗传图谱;定位了4个与抗黑腐病相关的位点,BRQTL-C1_1、BRQTL-C1_2、BRQTL-C3、RQTL-C6,其中BRQTL-C1_2为主效QTL |
Afrin等[ | 甘蓝 | 通过分析甘蓝种质的全基因组测序数据来鉴定31个NBs编码基因 | 发现Bol 003711、Bol 010135、Bol 010559、Bol 022784、Bol 029866等基因在甘蓝抗黑腐病机制中发挥作用 |
Table 4 Research progress on molecular markers related to resistance to black rot in broccoli and related vegetables
参考文献 | 实验材料 | 研究方法 | 研究结论/成果 |
---|---|---|---|
古瑜等[ | 花椰菜 | 用一对近等基因系的花椰菜C712(抗病系)和C731(感病系)品系及抗病基因供体C5,通过剪叶法接种病菌鉴定,利用cDNA-AFLP技术,研究了花椰菜黑腐病抗性在黑腐病菌侵染和非侵染条件下基因表达的情况 | 推测M6cDNA片段可能就是编码花椰菜中类2A6蛋白的部分基因片段,是参与花椰菜抗病反应信号途径的相关调控基因片段 |
Soengas等[ | 白菜 | 利用甘蓝型油菜感病自交系R-o-18与B162杂交获得的114株F2群体的223条AFLP带,构建了甘蓝型油菜10个连锁群(A01~A10)的连锁图谱,图谱总距离为664 cM | 发现对1号和4号小种的抗性显著QTL聚集在A06上。在A06上,对1号和4号生理小种的抗性QTL的一致区间不重叠,表明对各生理小种的抗性是由不同但紧密连锁的QTL决定的 |
Doullah等[ | 甘蓝 | 用感病材料:Green Commet(GC)P09作为母本和抗性DH系ReihoP01做杂交,获得F1群体,通过自交得到F2、F3群体;提取亲本和94个F2个体的DNA,做多态性检测;对F3群体通过剪叶法做抗性鉴定 | 构建包含35对CAPS标记和57对SRAP标记的青花菜遗传连锁图谱,共10个连锁群,覆盖320.5 cM,平均遗传图距为3.56 cM,检测到2个与抗黑腐病相关的显著性QTL,分别是位于LG2上的CAM 1-GSA 1和位于LG9上的F12-R12 e-BORED |
Kifuji等[ | 甘蓝 | 分别在2009年10月(09Au)和2010年10月(10Au)使用140和142株F2植物进行接种测试。并进行多态性分析,构建连锁图谱。 | 构建了一个由9个连锁群组成的连锁图,共有209个标记,定位到3个与抗性相关的QTL,QTL-1、QTL-2和QTL-3分别位于连锁群C2、C4和C5上。QTL-1的LOD值最高,加性效应最强,为主效基因 |
Lee等[ | 甘蓝 | 通过对2个甘蓝亲本系全基因组重测序及SNP检测,以及3 a内对F2和F3代植株3次独立接种鉴定 | 构建出由368个标记组成,覆盖1 467.3 cM,相邻标记之间的平均间隔为3.88 cM的遗传图谱;定位了4个与抗黑腐病相关的位点,BRQTL-C1_1、BRQTL-C1_2、BRQTL-C3、RQTL-C6,其中BRQTL-C1_2为主效QTL |
Afrin等[ | 甘蓝 | 通过分析甘蓝种质的全基因组测序数据来鉴定31个NBs编码基因 | 发现Bol 003711、Bol 010135、Bol 010559、Bol 022784、Bol 029866等基因在甘蓝抗黑腐病机制中发挥作用 |
[1] | 韩风庆, 李占省, 刘玉梅, 等. 青花菜黑腐病发病规律及综合防治措施[J]. 中国蔬菜, 2019 (11): 98-101. |
[2] | 李立鑫. 青花菜的高产栽培技术要点[J]. 广东蚕业, 2022, 56(5): 51-53. |
[3] | LÓPEZ-CHILLÓN M T, CARAZO-DÍAZ C, PRIETO-MERINO D, et al. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects[J]. Clinical Nutrition, 2019, 38(2): 745-752. |
[4] | CHEN G C, KOH W P, YUAN J M, et al. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese Health Study and meta-analysis[J]. The British Journal of Nutrition, 2018, 119(9): 1057-1067. |
[5] | RAIOLA A, ERRICO A, PETRUK G, et al. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases[J]. Molecules, 2017, 23(1): 15. |
[6] | 李占省, 刘玉梅, 方智远, 等. 我国青花菜产业发展现状、存在问题与应对策略[J]. 中国蔬菜, 2019 (4): 1-5. |
[7] | 张黎黎, 刘玉梅, 田自华, 等. 十字花科蔬菜抗黑腐病育种研究进展[J]. 园艺学报, 2012, 39(9): 1727-1738. |
[8] | 刘莉莉, 文正华, 单晓政, 等. 青花菜黑腐病致病菌的分离和鉴定[J]. 中国瓜菜, 2018, 31(7): 18-22. |
[9] | RUBEL M H, ROBIN A H K, NATARAJAN S, et al. Whole-genome re-alignment facilitates development of specific molecular markers for races 1 and 4 of Xanthomonas campestris pv. campestris, the cause of black rot disease in Brassica oleracea[J]. International Journal of Molecular Sciences, 2017, 18(12): 2523. |
[10] | ALVAREZ A M. Serological, pathological, and genetic diversity among strains of Xanthomonas campestris Infecting crucifers[J]. Phytopathology, 1994, 84(12): 1449. |
[11] | 许园园, 邢苗苗, 严继勇, 等. 甘蓝黑腐病致病菌分离与种质资源抗性鉴定[J]. 江苏农业科学, 2022, 50(10): 98-103. |
[12] | VICENTE J G, CONWAY J, ROBERTS S J, et al. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars[J]. Phytopathology, 2001, 91(5): 492-499. |
[13] | AFRIN K, RAHIM M A, RUBEL M H, et al. Development of race-specific molecular marker for Xanthomonas campestris pv. campestris race 3, the causal agent of black rot of crucifers[J]. Canadian Journal of Plant Science, 2018, 98(5): 1119-1125. |
[14] | AFRIN K S, RAHIM M A, RUBEL M H, et al. Development of PCR-based molecular marker for detection of Xanthomonas campestris pv. campestris race 6, the causative agent of black rot of brassicas[J]. The Plant Pathology Journal, 2020, 36(5):418-427. |
[15] | AFRIN K S, RAHIM M A, JUNG H J, et al. Development of molecular marker through genome realignment for specific detection of Xanthomonas campestris pv. campestris race 5, a pathogen of black rot disease[J]. Journal of Microbiology and Biotechnology, 2019, 29(5): 785-793. |
[16] | WILLIAMS P. Black rot: a continuing threat to world crucifers[J]. Plant Disease, 1980, 64:736-742. |
[17] | SCHAAD N W. A qualitative method for detecting Xanthomonas campestris in crucifer seed[J]. Phytopathology, 1975, 65(9): 1034. |
[18] | ALVAREZ A M. Black rot of cabbage in Hawaii: Inoculum source and disease incidence[J]. Phytopathology, 1978, 68(10):1456. |
[19] | SUTTON J C, WILLIAMS P H. Relation of xylem plugging to black rot lesion development in cabbage[J]. Canadian Journal of Botany, 1970, 48(2):391-401. |
[20] | SMITH E F. Bacteria in relation to plant diseases[M]. Washington, D.C: Carnegie Institution of Washington, 1905. |
[21] | 季核亮, 邢堃, 陶熠, 等. 花椰菜黑腐病病害分析及抗病品种推荐[J]. 长江蔬菜, 2022 (19):61-62. |
[22] | 李永平, 沈立, 何道根. 浙江西兰花产业现状及国产品种在推广过程中存在的问题和对策[J]. 浙江农业科学, 2017, 58(7): 1175-1177. |
[23] | 施俊生. 国家西兰花良种重大科研联合攻关进展及对策建议[J]. 浙江农业科学, 2019, 60(12): 2223-2225. |
[24] | 简元才, 郝立新, 贾翠莹. 青花菜对芜菁花叶病毒病(TuMV)和黑腐病抗病性材料的鉴定及筛选[J]. 北京农业科学, 1993(5):25-27. |
[25] | 姚玉荣, 霍建飞, 郝永娟, 等. 花椰菜苗期黑腐病抗、感品种转录组差异表达分析[J]. 山东农业科学, 2020, 52(7): 1-6. |
[26] | 肖崇刚. 一种甘蓝黑腐病接种新方法[J]. 植物保护, 1994, 20(5): 35-35. |
[27] | 芦燕. 大白菜黑腐病病原菌鉴定和抗病性鉴定方法研究[D]. 杨凌: 西北农林科技大学, 2008. |
[28] | 李永镐, 徐丽波. 甘蓝黑腐病苗期抗病性鉴定方法的研究[J]. 东北农学院学报, 1990, 21(2): 125-129. |
[29] | 张玉勋, 徐月军, 张炎光, 等. 萝卜黑腐病菌致病性测定及苗期抗性鉴定方法的初步研究[J]. 山东农业科学, 1999, 31(2): 34-36. |
[30] | 张玉勋, 曲士松, 黄宝勇, 等. 萝卜种质资源抗黑腐病鉴定[J]. 山东农业科学, 2000, 32(6): 33-34. |
[31] | STAUB T. Factors influencing black rot lesion development in resistant and susceptible cabbage[J]. Phytopathology, 1972, 62(7): 722. |
[32] | PINEDA M, PÉREZ-BUENO M L, BARÓN M. Novel vegetation indices to identify broccoli plants infected with Xanthomonas campestris pv. campestris[J]. Frontiers in Plant Science, 2022, 13: 790268. |
[33] | 施俊生. 国家西兰花良种重大科研联合攻关2019年度十大优秀品种[J]. 浙江农业科学, 2020, 61(5): 838-840. |
[34] | TAYLOR J D, CONWAY J, ROBERTS S J, et al. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica Genomes[J]. Phytopathology, 2002, 92(1): 105-111. |
[35] | 刘玉梅, 孙培田, 方智远, 等. 青花菜抗源材料的筛选和利用[J]. 中国蔬菜, 1996(6): 25-28. |
[36] | TONGUÇ M, GRIFFITHS P D. Evaluation of Brassica carinata accessions for resistance to black rot (Xanthomonas campestris pv. campestris)[J]. HortScience, 2004, 39(5): 952-954. |
[37] | 杨竹莹. 中晚熟抗黑腐病青花菜新品种种子生产与高产栽培技术研究[D]. 杨凌: 西北农林科技大学, 2007. |
[38] | 姚星伟, 牛国保, 单晓政, 等. 花椰菜苗期黑腐病抗病性鉴定[J]. 黑龙江农业科学, 2018 (8): 39-42. |
[39] | 王桂香, 严红, 曾兴莹, 等. 花椰菜:黑芥体细胞杂交获得抗黑腐病异附加系新材料[J]. 园艺学报, 2011, 38(10): 1901-1910. |
[40] | QIAN W, JIA Y T, REN S X, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris[J]. Genome Research, 2005, 15(6): 757-767. |
[41] | DA SILVA A C R, FERRO J A, REINACH F C, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature, 2002, 417: 459-463. |
[42] | VORHÖLTER F J, SCHNEIKER S, GOESMANN A, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis[J]. Journal of Biotechnology, 2008, 134(1/2): 33-45. |
[43] | RYAN R P, FOUHY Y, LUCEY J F, et al. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris[J]. Molecular Microbiology, 2007, 63(2): 429-442. |
[44] | TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular and General Genetics, 1991, 226(3): 409-417. |
[45] | LI R F, REN P D, LIU Q Q, et al. McvR, a single domain response regulator regulates motility and virulence in the plant pathogen Xanthomonas campestris[J]. Molecular Plant Pathology, 2022, 23(5): 649-663. |
[46] | LIAO C T, LIU Y F, CHIANG Y C, et al. Functional characterization and transcriptome analysis reveal multiple roles for prc in the pathogenicity of the black rot pathogen Xanthomonas campestris pv. campestris[J]. Research in Microbiology, 2016, 167(4): 299-312. |
[47] | CHOU F L, CHOU H C, LIN Y S, et al. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot[J]. Biochemical and Biophysical Research Communications, 1997, 233(1): 265-269. |
[48] | THOWTHAMPITAK J, SHAFFER B T, PRATHUANGWONG S, et al. Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean[J]. Phytopathology, 2008, 98(12): 1252-1260. |
[49] | TORRES P S, MALAMUD F, RIGANO L A, et al. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris[J]. Environmental Microbiology, 2007, 9(8): 2101-2109. |
[50] | FURUTANI A, TSUGE S, OHNISHI K, et al. Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae[J]. Journal of Bacteriology, 2004, 186(5): 1374-1380. |
[51] | METZ M, DAHLBECK D, MORALES C Q, et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana[J]. The Plant Journal, 2005, 41(6): 801-814. |
[52] | BAI K H, YAN H Y, CHEN X, et al. The role of RelA and SpoT on ppGpp production, stress response, growth regulation, and pathogenicity in Xanthomonas campestris pv. campestris[J]. Microbiology Spectrum, 2021, 9(3): e0205721. |
[53] | LIAO C T, LI C H, CHANG H C, et al. The lolB gene in Xanthomonas campestris pv. campestris is required for bacterial attachment, stress tolerance, and virulence[J]. BMC Microbiology, 2022, 22(1): 17. |
[54] | 江汉民, 郝擘, 于雪梅, 等. 花椰菜抗黑腐病消减cDNA文库的构建和分析[J]. 南开大学学报(自然科学版), 2010, 43(2): 15-22. |
[55] | 吴晓丽, 李建民, 段留生, 等. 花椰菜幼苗叶片抗氧化酶系统与抗黑腐病关系的研究[J]. 植物病理学报, 2005, 35(6): 509-513. |
[56] | RIBEIRO D G, DA CUNHA G, SANTOS C, et al. Brassica oleracea resistance-related proteins identified at an early stage of black rot disease[J]. Physiological and Molecular Plant Pathology, 2018, 104(1): 9-14. |
[57] | 古瑜, 毛英伟, 赵前程, 等. 花椰菜(Brassica oleracea var. botrytis)抗黑腐病差异表达cDNA片段的克隆及功能的初步研究[J]. 南开大学学报(自然科学版), 2008, 41(4): 42-48. |
[58] | SOENGAS P, HAND P, VICENTE J G, et al. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa[J]. Theoretical and Applied Genetics, 2007, 114(4): 637-645. |
[59] | DOULLAH M, MOHSIN G M, ISHIKAWA K, et al. Construction of a linkage map and QTL analysis for black rot resistance in Brassica oleracea L[J]. International Journal of Natural Sciences, 1970, 1(1): 1-6. |
[60] | KIFUJI Y, HANZAWA H, TERASAWA Y, et al. QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers[J]. Euphytica, 2013, 190(2): 289-295. |
[61] | LEE J, IZZAH N K, JAYAKODI M, et al. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage[J]. BMC Plant Biology, 2015, 15: 32. |
[62] | AFRIN K S, RAHIM M A, PARK J I, et al. Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata)[J]. Molecular Biology Reports, 2018, 45(5): 773-785. |
[63] | TONGUÇ M, GRIFFITHS P D. Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A 19182, using embryo rescue[J]. Euphytica, 2004, 136(3): 313-318. |
[64] | LV H H, FANG Z Y, YANG L M, et al. An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era[J]. Horticulture Research, 2020, 7: 34. |
[65] | CRUZ J, TENREIRO R, CRUZ L. Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X-campestris pv. campestris races[J]. Journal of Plant Pathology, 2017, 99(2): 403-414. |
[1] | TAN Guoyin, HE Daogen, GAO Xu, ZHU Changzhi, ZHANG Hongyun. Hybrid seed production technology for male sterility of broccoli [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(5): 1143-1147. |
[2] | SHI Xu, GAO Song, LIU Shuai, MA Shiquan, HUANG Kun, PAN Yuanhong, GUO Jian, SONG Wenfeng, ZHANG Tiehuai, GUAN Qunrong, XIAO Changdong, WU Jinhui, LONG Baoan, PU Enping, SHI Xiaohui, WU Si. Research on the development of smart tobacco agriculture based on artificial intelligence technology [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(4): 942-948. |
[3] | LIU Chunxiao, JIANG Xianda, LI Hui, KAN Jialiang, WANG Zhonghua, LI Xiaogang. Research progress on promoting sprouting and branching of pear [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(1): 117-124. |
[4] | SHI Shaoping, LIU Beibei, ZHOU Ludan. Comparative test of Brassica oleracea in Zhejiang Province [J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(1): 99-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||